Return to search

New supramolecular assemblies of toxic metal coordination complexes

xvii, 147 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Supramolecular chemistry is a relatively new and exciting field offering chemists simplistic approaches to generating complex assemblies through strategically designed ligands. Much like the many spectacular examples of supramolecular assemblies in nature, so too are chemists able to construct large, elegant assemblies with carefully designed ligands which bind preferentially to target metal ions of choice. An important concept of supramolecular chemistry, often subtle and overlooked, is secondary bonding interactions (SBIs) which in some cases, act as the glue to hold supramolecular assemblies together. This dissertation examines SBIs in a number of systems involving the pnictogen elements of arsenic and antimony as well as aromatic interactions in self-assembled monolayers. The first half of this dissertation is an introduction to the concepts of supramolecular chemistry and secondary bonding interactions and how they are used in the self-assembly process in the Darren Johnson laboratory. Chapter I describes how secondary bonding interactions between arsenic and aryl ring systems and antimony and aryl ring systems assist with the assembly process. Chapter II is a continuation of the discussion of SBIs but focuses on the interactions between arsenic and heteroatoms. The second half of this dissertation will describe work performed in collaboration with Pacific Northwest National Laboratory (PNNL) in Richland, WA. This work was performed under the guidance of Dr. R. Shane Addleman in conjunction with Professor Darren W. Johnson of the University of Oregon. This portion describes novel systems for use in heavy metal ion remediation from natural and unnatural water sources. Chapters III-V describe functionalized mesoporous silica for use in heavy metal uptake from contaminated water sources. Chapter V describes a new technology invented during this internship at PNNL which utilizes weak bonding interactions between aryl ring systems to produce regenerable green materials for toxic metal binding. This work is ongoing in the Darren Johnson lab.

This dissertation includes my previously published and co-authored material. / Committee in charge: Michael Haley, Chairperson, Chemistry;
Darren Johnson, Member, Chemistry;
Shih-Yuan Liu, Member, Chemistry;
James Hutchison, Member, Chemistry;
Eric Johnson, Outside Member, Biology

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/10562
Date03 1900
CreatorsCarter, Timothy Glen, 1976-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Chemistry, Ph. D., 2010;

Page generated in 0.002 seconds