Piezoelectric bimorph thin films may hold solutions for many future applications, such as lightweight deployable mirrors and inflatable struts. Non-contact actuation by an electron gun has shown promise in preventing issues that arise from attaching many wire leads to a thin film surface. This study investigates piezoelectric bimorph thin film response to electron gun actuation when covered with multiple spatial regions of control. Desired parameter ranges are found that will lead to predictable control under certain circumstances. Under such circumstances, film response is influenced almost solely by the primary electrons incident on the film, and secondary electrons have negligible effect. Such information is vital before attempting closed loop control of a thin-film piezoelectric mirror with multiple electrodes.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1315 |
Date | 01 January 2003 |
Creators | Macke, Benjamin Tyler |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.002 seconds