We investigated whether human lysosomal hydrolases, in common with secretory and plasma membrane glycoproteins, associate with the ER chaperone calnexin. Neither $ alpha$- or $ beta$-chains of $ beta$-hexosaminidase A, cathepsin D, nor the endogenous proteases cathepsins B or L associated with calnexin in COS-I cells. Hex $ alpha$-chains misfolded due to either the incorporation of azetidine-2-carboxylic acid, treatment with dithiothreitol, or the presence of a Tay-Sachs Disease mutation (leading to retention of Hex A $ alpha$-chains in the ER) also did not associate with calnexin. Chemical-crosslinking reagents or long-term labeling also failed to show a Hex A $ alpha$-chain association with calnexin. Lysosomal hydrolases also did not associate with the ER chaperone calreticulin. Surprisingly, $ alpha$-L-iduronidase and Hex A $ alpha$-chains associated with calnexin when overexpressed using a CMV promoter. The segregation of lysosomal hydrolases from secretory proteins thus occurs at an earlier stage than predicted. Hydrolase folding appears to be controlled by a pathway different from that used by secretory and plasma membrane glycoproteins.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.24047 |
Date | January 1996 |
Creators | Wilson, Daniel James, 1970. |
Contributors | Hechtman, Peter (advisor), Kaplan, Feigie (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Biology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001537686, proquestno: MM19857, Theses scanned by UMI/ProQuest. |
Page generated in 0.0153 seconds