Determining the cost of implementing a nuclear energy policy is very important due to the high costs associated with nuclear programs. Such programs may be unattainable to certain countries due to the many requirements that ensure a safe and secure nuclear sector. The IAEA has a large number of publications that indicate the requirements for implementing nuclear energy sectors. By using these publications, a framework was developed costing each of the main sectors of a nuclear energy program. These sectors correspond to the sectors that the South African government proposed for its nuclear energy policy. The main sectors are:
* Basic infrastructure development
* Nuclear power plant (NPP) sector
* Nuclear fuel cycle (NFC) sector
* Industrial involvement
An outline of the framework is attached as Appendix A. A more elaborative development of the framework is given in Chapter 2. The Government proposes the development of 20 GWe (Eskom Holdings Limited, 2010:3) of nuclear power over the next 20 to 25 years along with the development of the entire nuclear fuel cycle and an industrial base that will ensure that South Africa is independent of other countries and has the capability to develop nuclear power plants and associated technology. By applying the framework it was possible to estimate the costs of the different sectors. It was found by the author that the basic infrastructure and power plant sector will cost approximately R 889 billion (2008 Rand value), excluding financing costs. The fuel cycle sector is very sensitive to global resistance and will require considerable planning to ensure that international bodies and countries are satisfied with the local intention of pursuing fuel cycle implementation. To ensure that costs are minimized the implementation of the different fuel cycle steps is crucial and will depend on the rollout plan of the power plants and the local demand for fuel and the influence of security of fuel supply. To implement the entire front end and reprocessing step it was estimated that the cost will amount to approximately R 52,3 billion.
The cost of implementing the industrial sector development was not determined, due to the many factors involved. The different requirements in the sector may be supplied by similar industries currently active in South Africa. Most of the current industries will require further accreditation and may have to increase capacity if South Africa is to become a global supplier of nuclear technology. Sources indicated that the different sectors will require trained personnel numbers in the region of 77 000 (direct jobs). The amount of indirect jobs that will be created will be in the regions of 300 000. Government therefore has a huge responsibility to ensure that training and education programs are developed that can supply the demand of trained personnel. The different industries involved should also ensure that the relevant personnel are trained in advance, to obtain the required accreditation and experience. The final outcome of the revised Integrated Resource Plan (IRP2) was not yet available when this dissertation was completed. The outcomes of the future nuclear programs may therefore be different from the extent of developments and investments estimated by this study. The cost of reactors and basic infrastructure will have to be scaled to the revised objectives while the costs of the fuel cycle may change considerably due to a possible decrease in local demand. These changes will affect the economy of scale on many of the sectors of development. The framework is generic and may be applied to different nuclear development programs and countries. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
Identifer | oai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/4570 |
Date | January 2010 |
Creators | Ballack, Petrus Abram |
Publisher | North-West University |
Source Sets | North-West University |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds