Return to search

A Sediment Yield Equation from an Erosion Simulation Model

From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Sediment is widely recognized as a significant pollutant affecting water quality. To assess the impact of land use and management practices upon sediment yield from upland areas, it is necessary to predict erosion and sediment yield as functions of runoff, soil characteristics such as erodibility, and watershed characteristics. The combined runoff-erosion process on upland areas was modeled as overland flow on a plane, with rill and interrill erosion. Solutions to the model were previously obtained for sediment concentration in overland flow, and the combined runoff-erosion model was tested using observed runoff and sediment data. In this paper, the equations are integrated to produce a relationship between volume of runoff and total sediment yield for a given storm. The sediment yield equation is linear in runoff volume, but nonlinear in distance and, thus, watershed area. Parameters of the sediment yield equation include the hydraulic resistance parameter, rill and interrill erodibility terms, and flow depth-detachment coefficient and exponent.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/301037
Date15 April 1978
CreatorsShirley, E. D., Lane, L. J.
ContributorsSouthwest Watershed Research Center, Tucson, Arizona 85705
PublisherArizona-Nevada Academy of Science
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Proceedings
RightsCopyright ©, where appropriate, is held by the author.

Page generated in 0.0019 seconds