Return to search

Grazing management of subterranean clover (Trifolium subterraneum L.) in South Island (New Zealand)

This study consisted of two sheep grazed dryland pasture experiments. Experiment l compared sheep production from 3-year-old cocksfoot based pastures grown in combination with white, Caucasian, subterranean or balansa clover with a ryegrass-white clover pasture and a pure lucerne forage. Sheep liveweight gain per head from each pasture treatment and the pure lucerne stand was recorded in the 2006/07 and 2007/08 seasons. The cocksfoot-subterranean clover pasture provided equal (381 kg LW/ha in 2006) or higher (476 kg LW/ha in 2007) animal production in spring and gave the highest total animal production (646 kg LW/ha) averaged across years of the five grass based pastures. However, total annual liveweight production from lucerne was higher than any grass based pasture mainly due to superior animal production during summer when lucerne provided 42-85% higher animal production than any of the grass based pastures. In Experiment 2, the effect of stocking rate (8.3 (low) and 13.9 (high) ewes + twin lambs/ha) and time of closing in spring on lamb liveweight gain, pasture production and subterranean clover seedling populations was monitored over 2 years for a dryland cocksfoot-subterranean clover and ryegrass-subterranean clover pasture in Canterbury. In both years, twin lambs grew faster (g/head/d) in spring at low (327; 385) than high (253; 285) stocking rate but total liveweight gain/ha (kg/ha/d) was greater at high (7.26; 7.91) than low (5.43; 6.38) stocking rate. Ewes also gained 0.5 and 1.5 kg/head at the low stocking rate in 2006 and 2007 respectively but lost 0.2 kg/head in 2006 and gained 0.3 kg/head at high stocking rate in 2007. Mean subterranean clover seedling populations (per m²) measured in autumn after grazing treatments in the first spring were similar at both low (2850) and high (2500) stocking rate but declined with later closing dates in spring (3850, 2950, 2100 and 1700 at 2, 4, 6, 8 weeks after first visible flower). Seedling populations measured in autumn after grazing treatments in the second spring were also unaffected by stocking rate (low 1290, high 1190) but declined with later closing dates in spring (1470, 1320 and 940 at 3, 5 and 8 weeks after first flowering, respectively). The effect of stocking rate and closing dates in spring on pasture and clover production in the following autumn was similar to the effects on seedling numbers in both years. However, clover production in the following spring was unaffected by stocking rate or closing date in the previous year at the relatively high seedling populations generated by the treatments. This was presumably due to runner growth compensating for lower plant populations in pastures that were closed later in spring. Subterranean clover runner growth in spring may not compensate in a similar manner if seedling numbers in autumn fall below 500/m². Mean annual dry matter production from cocksfoot and ryegrass pastures grown with and without annual clovers pasture production ranged from 6.4 to 12.4 t DM/ha/y but stocking rate (8.3 vs. 13.9 ewes/ha) during spring did not affect annual pasture production. Pastures overdrilled with annual clovers yielded 23-45% more dry matter production than pastures grown without annual clovers. The study confirms the important role of subterranean clover in improving pasture production and liveweight gains of sheep in dryland cocksfoot and ryegrass pastures. Lowering stocking rate from 13.9 to 8.3 ewes/ha was a less effective method of increasing seed production of subterranean clover in dryland pastures although it did lead to increased liveweight gain per head.

Identiferoai:union.ndltd.org:ADTP/270074
Date January 2009
CreatorsAtes, Serkan
PublisherLincoln University
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://purl.org/net/lulib/thesisrights

Page generated in 0.0038 seconds