O greening ou Huanglongbing (HLB) é uma das mais graves doenças dos citros presentes nos pomares do Brasil. Causada pela bactéria Candidatus Liberibacter spp, é transmitida pelo inseto psilídeo Diaphorina citri, que ao se alimentar de uma planta doente transmite a doença às demais plantas. O greening apresenta como sintoma, manchas amareladas nas folhas, muitas vezes confundidas com deficiências nutricionais. A erradicação da planta e o controle do inseto transmissor são as únicas formas de prevenção para evitar a sua propagação. Este trabalho teve por objetivo avaliar uma metodologia baseada em segmentação por cor e outra baseada em análise de textura para avaliação de folhas de citros sintomáticas, identificando se estão contaminadas com o greening ou outras doenças e deficiências nutricionais. Foram fornecidas pelo grupo FISHER, 324 amostras de folhas cítricas, contendo folhas com doenças (greening, CVC e rubelose) e deficiências nutricionais (manganês, magnésio e zinco). As folhas foram digitalizadas por um scanner de mesa, com duas resoluções, utilizando somente a parte frontal da folha. Foram montados três bancos de imagens. Os resultados gerados com a metodologia baseada em segmentação por cor utilizando RNA PMC, mostraram que essa metodologia não é eficiente. Na metodologia baseada na análise por textura foram avaliados os descritores LBP, LFP e os de Haralick. Para estes descritores foram extraídas amostras por folha e por quadrantes das folhas nos canais de cores vermelho e verde e amostras em níveis de cinza. Os resultados gerados pelos descritores foram classificados pela distância ◈ e pelos algoritmos IBK e RNA PMC do toolbox Weka. Os melhores resultados foram para os descritores LBP e LFP-s para distância ◈, com valores de sensibilidade acima de 97% e 93%, respectivamente, e para o LBP com o algoritmo IBK, com valores de sensibilidade acima de 98,5%. Os resultados obtidos evidenciam que o descritor LBP é o mais eficiente seguido pelo LFP-s na diferenciação do greening das outras pragas. / The greening or Huanglongbing (HLB) is one of the most serious diseases of citrus orchards present in Brazil. HLB is caused by the bacterium Candidatus Liberibacter spp, it is transmitted by the psyllid insect (Diaphorina citri) that, when feeding on a diseased plant, it transmits the disease to other plants. One of the symptoms of the greening are yellowish spots on the leaves, often confused with nutritional deficiencies. The eradication of plants and control of insect are the only forms of prevention. This work aims to evaluate two methodologies: one based on color segmentation and the other based on texture analysis for assessment of symptomatic citrus leaves, identifying whether they are infected with greening and other diseases and nutritional deficiencies. A number of 324 samples of citrus leaves were provided by FISHER group, infected with diseases (greening, CVC, rubelose) and nutritional deficiencies ( manganese, magnesium, zinc) . The leaves were acquired by a flatbed scanner with two different resolutions, using only the front side of the leaf. Three datasets of images were constructed. The results generated using the methodology based on color segmentation with ANN MLP, showed that this methodology is not efficient. In the methodology based on texture analysis it was evaluated the LBP, LFP and the Haralick descriptors. For these descriptors it was extracted samples from the leaves and quadrants of leaves, in red and green color channels and grayscale. The results generated by the descriptors were classified by ◈ distance and the algorithms IBK and ANN MLP from the toolbox Weka. The best results were for LBP descriptor and LFP-s for ◈ distance with values of sensitivity above 97% and 93%, respectively, and the LBP with IBK algorithm, with values of sensitivity above 98.5%. The results showed that the LBP descriptor is the most efficient followed by LFP-s in the differentiation of the greening from other pests.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29072014-160016 |
Date | 07 May 2014 |
Creators | Patricia Pedroso Estevam Ribeiro |
Contributors | Maria Stela Veludo de Paiva, Ednaldo José Ferreira, Celso Aparecido de França |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds