Return to search

Estimation statistique d'atlas probabiliste avec les données multimodales et son application à la segmentation basée sur l'atlas

Les atlases d'anatomie informatisé jouent un rôle important dans l'analyse d'images médicales. Cependant un atlas se réfère généralement à une image standard ou une moyenne d'image aussi appelé template, qui probablement représente bien d'une population observée, il ne suffit pas pour caractériser la population observée en détail. Un template doit être apprises conjointement avec la variabilité géométrique des formes représentées dans les observations. Ces deux quantités seront par la suite former l'atlas de la population correspondante. La variabilité géométrique est modélisée comme des déformations du template de sorte qu'il s'adapte aux observations. Dans la première partie du travail, nous fournissons un nouveau modèle statistique générative basée sur des templates déformables denses qui représente plusieurs types de tissus observés dans les images médicales. Notre atlas contient à la fois une estimation des templates probabiliste de chaque tissu (appelée classes) et la métrique de déformation. Nous utilisons un algorithme stochastique pour l'estimation de l'atlas probabilistes donné un ensemble de données. Cet atlas est ensuite utilisé pour la méthode de segmentation basée sur l'atlas pour segmenter les nouvelles images. Expériences sont montrées sur les images T1 du cerveau. Les analyses traditionnelles d'imagerie de résonance magnétique fonctionnelle utilisent peu d'informations anatomies. Le recalage des images vers un template est basé sur l'anatomie individuelle et ne tient pas compte des informations fonctionnelles, donc les activations détectées ne se limitent pas à la matière grise. Dans la deuxième partie du travail, on propose un modèle statistique pour estimer un atlas probabiliste de l'IRM fonctionnelle et T1 qui résume à la fois des informations anatomies et fonctionnelles et la variabilité géométrique de la population. Le recalage et la segmentation sont effectuées conjointement pendant l'estimation de l'atlas et l'activité fonctionnelle est limitée à la matière grise, augmenter la précision de l'atlas. Inférer l'abondance des protéines de l'intensité de peptides est l'étape clé dans la protéomique quantitative. La conclusion est nécessairement plus précis quand de nombreux peptides sont pris en compte pour une protéine donnée. Pourtant, l'information apportée par les peptides partagées par différentes protéines est souvent jeté. Dans la troisième partie du travail, nous proposons un système statistique basée sur une modèle hiérarchique à inclure cette information. Notre méthodologie, basée sur une analyse simultanée de tous les peptides quantifiés, gère les erreurs biologiques et techniques ainsi que l'effet des peptides. En outre, nous proposons une mise en œuvre pratique adapté à l'analyse de grandes bases de données. Par rapport à une méthode basée sur l'analyse d'une protéine à la fois (ce qui ne comprend pas les peptides partagés), notre méthodologie s'est révélée être beaucoup plus fiable pour estimer l'abondance de protéines et de tester les changements d'abondance.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00969176
Date31 March 2014
CreatorsXu, Hao
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds