Crop insurance is recognized as one of the most efficient mechanisms of income protection in agriculture, transferring risk from agriculture to other agents and economic sectors. Insurance tends to stimulate the increase of cultivated area and the use of technology, especially as it acts as an additional guarantee for access to credit. In Brazil, however, the massification of rural insurance is limited due to the restricted budget to fund government subsidization. Also, the lack of predictability and guarantee of resources prevents the long-term planning of investments by the private sector, imposes costs on the beneficiaries and generates dissatisfaction of the target public. This thesis aims to contribute to the expansion of crop insurance in Brazil through the research of index insurance, which has lower administrative and claim adjustment costs when compared to traditional insurance. The absence of in situ claim adjustment and moral hazard monitoring reduces the administrative costs of this type of insurance, permitting a subsidy free crop insurance. In the first of two articles, we explore the availability and quality of public databases for soybean yields and daily rainfall in the state of Paraná in Brazil in order to verify the feasibility of an index insurance product. We use multiple imputation by chained equations (MICE) to fill missing values in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical clustering. Our results indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and hierarchical clustering being effective tools in the pre-processing of data. The second article studies the efficiency of a novel regression approach, the geographically weighted quantile LASSO (GWQLASSO) in the modelling of yield-index relationship for weather index insurance products. GWQLASSO allows regression coefficients to vary spatially, while using the information from neighboring locations to derive robust estimates. The LASSO component of the model facilitates the selection of relevant explanatory variables. A weather index insurance (WII) product is developed based on 1-month SPI derived from a daily precipitation dataset for 41 weather stations in the State of Paraná (Brazil) for the period of 1979 through 2015. Soybean yield data are also used for the 41 municipalities from 1980 through 2015. The effectiveness of the GWQLASSO product is evaluated against a classic quantile regression approach and a traditional yield insurance product using the Spectral Risk Measure (SRM) and the Mean Semi-deviation. While GWQLASSO proved as effective as quantile regression it outperformed the yield insurance product, thus proving an alternative to the crop insurance market in Brazil and other locations with limited data. / O seguro agrícola é reconhecido como um dos mecanismos mais eficientes de proteção de renda na agricultura, transferindo o risco da fazenda para outros agentes e setores econômicos. O seguro tende a estimular o aumento da área cultivada e o uso de tecnologia, principalmente por atuar como garantia adicional de acesso ao crédito. No Brasil, no entanto, a massificação do seguro rural é limitada devido ao orçamento restrito para financiar o programa de subvenção governamental. Além disso, a falta de previsibilidade e garantia de recursos impede o planejamento de investimentos de longo prazo pelo setor privado, impõe custos aos beneficiários e gera insatisfação do público alvo. Esta tese visa contribuir para a expansão do seguro agrícola no Brasil por meio da pesquisa de seguro de índice climático, que possui menores custos administrativos e regulatórios quando comparado ao seguro tradicional. A ausência de validação de sinistro in loco e monitoramento de risco moral reduz os custos administrativos desse tipo de seguro, permitindo um seguro agrícola sem subsídio. No primeiro de dois artigos, exploramos a disponibilidade e a qualidade de bancos de dados públicos para produtividade de soja e precipitação diária no estado do Paraná, no Brasil, a fim de verificar a viabilidade de um produto de seguro de índice climático. Usamos a imputação múltipla por equações encadeadas (MICE) para preencher valores ausentes no conjunto de dados de precipitação e estudar a existência de padrões espaciais e temporais nos dados por meio de agrupamento hierárquico. Nossos resultados indicam que o Paraná preenche os requisitos de dados para um seguro de índice climático escalável com o uso do método MICE, e o agrupamento hierárquico é uma ferramenta eficaz no pré-processamento de dados. O segundo artigo estuda a eficiência de uma nova abordagem de regressão, a regressão quantílica LASSO ponderada geograficamente (GWQLASSO) na modelagem da relação entre o índice climático e a produtividade de soja. O GWQLASSO permite que os coeficientes de regressão variem espacialmente, enquanto utiliza a informação proveniente dos locais vizinhos de modo a obter estimativas robustas. O componente LASSO do modelo facilita a seleção de variáveis explicativas relevantes. Um produto de seguro de índice climático (WII) é desenvolvido com base em um índice de precipitação normalizado (intervalo de 1 mês) derivado de um conjunto de dados diários de precipitação para 41 estações meteorológicas (uma por município) no Estado do Paraná no período de 1979 a 2015. Os dados de rendimento da soja também são obtidos para estes 41 municípios de 1980 a 2015. A eficácia do produto GWQLASSO é avaliada em comparação com uma abordagem de regressão quantílica clássica e um produto tradicional de seguro de rendimento utilizando-se a medida de risco espectral (SRM) e o semi-desvio médio. Embora o GWQLASSO tenha se mostrado tão eficaz quanto a regressão quantílica, ele superou o produto de seguro de rendimento, provando assim ser uma alternativa ao mercado de seguro agrícola no Brasil e em outros locais com dados limitados.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02082019-100224 |
Date | 22 March 2019 |
Creators | Miquelluti, Daniel Lima |
Contributors | Ozaki, Vitor Augusto |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds