The propagation of seismic waves may be described in the space-frequency domain by the Rayleigh-Sommerfeld convolution integral. The kernel of this integral is called a spatial wavelet and it embodies the physics and geometry of the propagation problem. The concepts of spatial convolution and spatial wavelet are simple and are similar to other topics studied by geophysicists. With a view to understanding these concepts, some aspects of spatial wavelets and their application to two-dimensional, zero-offset, acoustic seismic modelling were investigated.
In studying the spatial wavelet, two topics in particular were examined: spatial aliasing and wavelet truncation. Spatial aliasing arises from the need to compute a discrete wavelet for implementation on a computer. This problem was solved by using an analytic expression for the spatial wavelet in the Fourier (wavenumber) domain. In the wavenumber domain the wavelet was windowed by a fourth order Butterworth operator, which removed aliasing. This technique is simple and flexible in its use. The second problem of wavelet truncation is due to the necessity of having a wavelet of finite length. A length limiting scheme based upon on the energy content of a wavelet was developed. It was argued that if that if a large portion of the wavelet energy was contained in a finite number of samples, then truncation at that sample would incur a minimal loss of information. Numerical experiments showed this to be true. The smallest length wavelet was found to depend on temporal frequency, medium velocity and extrapolation increment. The combined effects of these two solutions to the practical problem of computing a spatial wavelet resulted in two drawbacks. First, the wavelets provide modelling capabilities up to structural dips of 30 degrees. Second, there is a potential for instability due to recursive application of the wavelet. However, neither of these difficulties hampered the modelling of fairly complex structures.
The spatial wavelet concept was applied to seismic modelling for media of varying complexity. Homogeneous velocity models were used to demonstrate diffraction evolution, dip limitations and imaging of curved structures. The quality of modelling was evaluated by migrating the modelled data to recover the time-image model of the reflection structure. Migrations of dipping and synform structures indicated that the modelled results were of a high calibre. Horizontally stratified velocity models were also examined for dipping and synform structures. Modelling these reflection structures showed that the introduction of a depth variable velocity profile has a tremendous influence on the synthetic seismic section. Again, migration proved that the quality of the data was excellent. Finally, the spatial wavelet algorithm was extended to the case of laterally varying velocity structures. The effects of space variant spatial convolution in the presence of a smoothed velocity field were examined. Smoothed velocity fields were computed by a simple weighted averaging procedure. The weighting function used was a decaying exponential whose decay rate determined the amount of smoothing. Seis-mograms computed for this case showed that the algorithm gave smoother and more continuous reflection signatures when the velocity field has been smoothed so that the largest lateral velocity gradient corresponded to the lower end of the temporal frequency band of the spatial wavelets. In this respect, the results are similar to those of geometric ray theory. Also, the travel times of these models compared favourably with those of ray tracings. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/26504 |
Date | January 1986 |
Creators | Nautiyal, Atul |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0102 seconds