Return to search

Minimizing the Number of Electrodes for Epileptic Seizures Prediction

Epilepsy is a neurological disorder affecting 1-2 % of the population in the world. People diagnosed with epilepsy are put at high risk of getting injured due to the unpredictable seizures caused by the disorder. Electroencephalography (EEG) in combination with machine learning can be used for prediction of an epileptic seizure. Therefore, a portable prediction device is of great interest with high emphasis for it to be user-friendly. One way to achieve this is by minimizing the number of electrodes placed on the scalp. This study examines the number of electrodes that provide sufficient information for prediction of a seizure. The highest prediction accuracy of 91 %, 97 % sensitivity and 85 % specificity was achieved with as few as 16 electrodes. Due to the limitation of the intracranial EEG recordings further testing must be performed on scalp EEG recordings to provide valid results.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-213001
Date January 2017
CreatorsEmilsson, Linnea, Tarasov, Yevgen
PublisherKTH, Skolan för teknik och hälsa (STH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-STH ; 59

Page generated in 0.0018 seconds