Chiral separation systems in capillary electrophoresis are in the scope of interest of many research groups all over the world. Therefore, the need to develop reliable theoretical models, which would help to explain phenomena connected with chiral separations or optimization of separation conditions, is obvious. In this thesis several mathematical models and approaches that can fulfill these requirements are presented. First part of the thesis deals with the determination of rate constants of interconversion of enantiomers by means of dynamic capillary electrophoresis. We focused on mixtures of chiral selectors and formulated a mathematical model, which enables to determine rate constants of interconversion in such systems. Mixtures of chiral selectors are very popular in separation practice due to their enhanced enantioselectivity. The theoretical model established in the thesis is able to explain the separation mechanisms of multi-chiral selector systems and to propose and verify possible ways of their optimization. In addition, the separation mechanism in systems with simultaneous cyclodextrin and borate complexation was revealed. Finally we present the complete mathematical model of electromigration in systems with complexation agents. The model is implemented into our simulation tool Simul 5...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:305918 |
Date | January 2012 |
Creators | Svobodová, Jana |
Contributors | Gaš, Bohuslav, Foret, František, Kenndler, Ernst |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds