Return to search

Relaxation in the electrical properties of amorphous selenium based photoconductors

Time-of-Flight (TOF) and Interrupted-Field Time-of-Flight (IFTOF) measurements were performed repeatedly on several different samples of amorphous Selenium (a-Se) alloys as they aged from deposition or after annealing above the glass transition temperature (Tg) in order to examine the relaxation of the electrical properties. The mobility was found to relax slightly, but the relaxation did not fit well to a stretched exponential. The increase in the mobility for electrons was significantly more than the increase in mobility for holes in all sample compositions measured. For electrons, the mobility increased by 20-40%, whereas for holes, the mobility only increased by less than 10%. The relaxation of the lifetime, on the other hand, fit well to a stretched exponential. Furthermore, the overall increase in lifetime as it relaxed was much greater than the increase in the mobility. The average increase in lifetime was 85% for holes and 45% for electrons. The stretched exponential fits consisted of two important factors: the structural relaxation time ôsr and the stretching factor â. For a given a-Se alloy, ôsr was approximately the same for relaxation from both immediately after sample deposition, and annealing above Tg, indicating that the relaxation is readily repeatable and has the same physical origin. The relaxation was found to be dependent on the a-Se alloy composition. While the general shape of the relaxation was consistently a stretched exponential, ôsr increased with increasing arsenic (As) concentration in the alloy, while â remained constant between 0.6-0.7. Additionally, ôsr was found to be the same for both electron and hole relaxations for a given composition. Thus, the relaxation in both the electron and hole lifetime seems to be controlled by the same structural relaxation process, that is, the electron and hole traps are structural in origin.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-04142009-180026
Date15 April 2009
CreatorsAllen, Christopher S.
ContributorsKasap, S.O.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04142009-180026/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds