Return to search

Study on molecular packing and its effect on the tribological properties of ultrathin molecular films

Self assembled monolayer films (SAMs) deposited on silicon surfaces have gained considerable interest due to their ability to modify surface properties for advanced applications in sensors, MEMS, and NEMS devices. These molecular films are typically deposited on silicon surfaces from solution using a variety of solvents, which can influence the molecular packing and quality of the films. To better understand these effects, we have performed a systematic solvent effect study of the growth of n-Octadecyltrichlorosilane (OTS) on silicon substrates using chloroform, dichloromethane, toluene, benzene and hexadecane. The films were characterized using contact angle measurements, Fourier Transform Infrared Spectroscopy (FTIR), and Atomic Force Microscopy (AFM) to evaluate the SAM growth rate and film quality. Lateral Force Microscopy (LFM) and transmission FTIR were used to characterize the molecular packing. Finally, we used AFM to make adhesion measurements on the films and correlated these results with friction data. These techniques provide a means to characterize the local nanoscale packing of the films. The Hertzian contact model was used to model and describe the adhesion and friction result. Our results show that using hexadecane as the solvent produced OTS films with the highest density molecular packing. By comparing to Langmuir-Blodgett SAM film deposition methods, we show that it is the intermolecular interaction between the solvent molecules and OTS that determines this density. Thus, the structure and chemical properties of the solvent molecule strongly influences the molecular packing, quality, and performance of the SAM film.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0727109-165009
Date27 July 2009
CreatorsCheng, Yue-an
ContributorsChao-Ming Chiang, Shuchen Hsieh, Michael Yen-Nan Chiang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0727109-165009
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0011 seconds