Studies of biomolecular interactions are of interest for several reasons. Beside basic research, the knowledge gained from such studies is also very valuable in for example drug target identification. Medical care is another area where biomolecules may be used as biomarkers to aid physicians in making correct diagnosis. In addition, the highly specific interactions between antibodies and almost any substance opens up the possibilities to design systems for detection of trace amounts of both biological and non-biological substances within environmental restoration, law enforcement, correctional care, customs service and national security. A biochip, which contains a biologically active material, offers a means of monitoring the molecular interactions in the above applications in a sensitive and specific manner. The biochip is a key component of a biosensor, which also includes components for transforming the interaction events into a human-readable signal. This thesis describes the use of poly(ethylene glycol) (PEG) in biochip design. Two different approaches are presented, the first based on ethylene glycol (EG)-containing alkyl thiol self-assembled monolayers (SAMs) on flat gold and the second on photo-induced graft copolymerisation of PEG-containing methacrylate monomers onto various substrates. The former is a two dimensional system where EG-terminated thiols are mixed with similar thiols presenting tail groups that mimic the explosive substance 2,4,6-trinitrotoluene (TNT). In an immunoassay, the detection limit for TNT was determined to fall in the range 1-10 µg/L. In the second approach, a branched three dimensional biosensor matrix (hydrogel) is proposed. The carboxymethylated (CM) dextran matrix, which is commonly used within the biosensing community, is not always ideal for studies of biointeractions, due to the non-specific binding frequently encountered in work with complex biological solutions and various proteins. To employ PEG, which displays a low non-specific binding of such species, is therefore an interesting option worth investigating. The use of a branched graft polymerised PEG matrix in biosensor applications is novel as compared to previous reports which have focused on linear PEG chains. The latter approach provides, at maximum, one functional group, per surface anchoring point, for immobilisation of sensor elements. Thus, it has the inherited disadvantage that it limits the number of available immobilisation sites. The present PEG matrix contains a large number of functional groups, for immobilisation of sensor elements, per grafting site and offers the potential of improved response upon binding to the analyte as demonstrated in a series of successful sensor experiments. Furthermore, the nature of the process enables easy preparation of matrix patterns and gradients. In a PEG matrix gradient, protein permeability is studied and the capabilities of immobilising proteins are demonstrated. By combining the patterning technique with different monomers in a two-step process, an inert platform, lacking chemical attachment sites, is provided with arrays of spots (with immobilisation capabilities), which are conveniently addressed via microdispensing and used for biosensor purposes. The EG-terminated thiols present another means of generating such inert platforms, a route which is also investigated. To further explore the sensor quality of these spots, the concepts of patterning and gradient formation are combined and studied. / Det är intressant att studera biomolekylära interaktioner av många anledningar. För att kunna bedriva framgångsrik läkemedelsutveckling är det oerhört viktigt att känna till hur olika molekyler samverkar i människokroppen. Inom sjukvården kan biomolekyler användas som biomarkörer, då närvaro av dem eller förändringar av deras koncentrationer är kopplade till sjukdomstillstånd, och därmed hjälper läkaren att ställa rätt diagnos. Dessutom kan de mycket specifika interaktionerna mellan antikroppar och (i princip) valfri substans användas för detektion av spårämnen vid miljösaneringsarbete, gränskontroller, polisarbete, fängelser och arbete med nationell säkerhet. Den här avhandlingen beskriver hur polymeren polyetylenglykol (PEG) kan användas vid design av biochip. Ett biochip är en liten anordning, som kan användas för att detektera specifika molekyler med hjälp av en biologisk interaktion. Traditionellt har PEG använts inom biomaterialsektorn, men återfinns även i hygienartiklar som tvål och tandkräm. Ett annat användningsområde är konservering av bärgade träskepp och i en del litiumjonbatterier ingår PEG som en komponent. Dessutom pågår utveckling av PEG-innehållande skyddsvästar. I det här arbetet används PEG framför allt på grund av sin förmåga att minimera ospecifik inbindning av proteiner, som utgör en stor del av gruppen biomolekyler, till ytor på biochip. Två olika typer av ytbeläggningar, som innehåller den här polymeren, har använts. Den första typen ger mycket tunna (~0.000003 mm), tvådimensionella filmer medan den andra ger en något tjockare (~0.00005 mm), tredimensionell struktur (matris). De tvådimensionella filmerna har använts för att utveckla en sprängämnesdetektor med mycket hög känslighet (detektionsgräns mellan 1-10 ppb). En viktig beståndsdel i detta system är antikroppar riktade mot sprängämnet trinitrotoluen (TNT). Den tredimensionella matrisen är mer generell och kan användas för att studera många olika molekylära interaktioner. Tillverkningsmetoden av matrisen är baserad på belysning med ultraviolett ljus och är därmed lämpad för att skapa mönstrade ytor. Genom att blockera delar av ljusflödet begränsas tillväxten av matrisen till de belysta delarna. På så sätt har bland annat så kallade mikro-arrayer, bestående av mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster, tillverkats. Tekniken tillåter även tillverkning av gradienter, där matrisens tjocklek varierar längs med provet, genom att belysa olika delar av provytan olika länge. Genom att undersöka dessa gradienter har information om matrisens genomsläpplighet för proteiner kunnat extraheras. Gradientkonceptet har även kombinerats med mikro-arraytillverkningen och gett möjlighet att studera interaktioner mellan flera olika modellproteiner och deras motsvarande antikroppar i olika tjocka matriser på en och samma yta. Det finns ett stort antal sätt att utnyttja interaktionerna mellan olika molekyler på ett biochip. Ett tilltalande tillvägagångssätt är exempelvis att i en mikro-array binda in olika molekyler som kan fånga kliniskt intressanta biomolekyler, i syfte att skapa en hälsoprofil. Ett sådant biochip skulle ge möjlighet att parallellt detektera eller bestämma koncentrationen av ett stort antal biomolekyler i till exempel en droppe blod. På så sätt kan en diagnos snabbt ställas, kanske till och med utan att patienten behöver uppsöka sjukvården. Den utvecklade PEG-matrisen har god potential att fungera i en sådan applikation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-9578 |
Date | January 2007 |
Creators | Larsson (Kaiser), Andréas |
Publisher | Linköpings universitet, Sensorvetenskap och Molekylfysik, Linköpings universitet, Tekniska högskolan, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1111 |
Page generated in 0.003 seconds