The primary aim of this research was to develop a method for determining the true uniaxial tensile strength of concrete by conducting a series of cylinder splitting, modulus of rupture (MOR) and cylinder/cube compression tests. The main objectives were: • Critically reviewing previous published research in order to identify gaps in current knowledge and understanding, including theoretical and methodological contributions to the true uniaxial tensile strength of concrete. In order to maintain consistency and increase the reliability of the proposed methods, it is essential to review the literature to provide additional data points in order to add additional depth, breathe and rigor to Senussi's investigation (2004). • The design of self compacting concrete (SCC), normal strength concrete (NSC) and high strength concrete (HSC) mixes and undertaking lab-based experimental works for mixing, casting, curing and testing of specimens in order to establish new empirical evidence and data. • Analysing the data, presenting the results, and investigating the application of validity methods as stated by Lin and Raoof (1999) and Senussi (2004). • To draw conclusions including comparison with previous research and literature, including the proposal of new correction factors and recommendations for future research. 29 batches of NSC, 137 batches of HSC, 44 batches of fly ash SCC and 47 batches of GGBS SCC were cast and their hardened and fresh properties were measured. Hardened properties measured included: cylinder splitting strength, MOR, cylinder compressive strength and cube compressive strength. A variety of rheological tests were also applied to characterise the fresh properties of the SCC mixes, including: slump flow, T50, L-box, V-funnel, J-ring and sieve stability. Cylinders were also visually checked after splitting for segregation. The tensile strength of concrete has traditionally been expressed in terms of its compressive strength (e.g. ft = c x c f ). Based on this premise, extensive laboratory testing was conducted to evaluate the tensile strength of the concretes, including the direct tension test and the indirect cylinder splitting and MOR tests. These tests however, do not provide sufficiently accurate results for the true uniaxial tensile strength, due to the results being based upon different test methods. This shortcoming has been overcome by recently developed methods reported by Lin and Raoof (1999) and Senussi (2004) who proposed simple correction factors for the application to the cylinder splitting and MOR test results, with the final outcome providing practically reasonable estimates of the true uniaxial tensile strength of concrete, covering a wide range of concrete compressive strengths 12.57 ≤ fc ≤ 93.82 MPa, as well as a wide range of aggregate types. The current investigation has covered a wide range of ages at testing, from 3 to 91 days. Test data from other sources has also been applied for ages up to 365 days, with the test results reported relating to a variety of mix designs. NSC, SCC and HSC data from the current investigation has shown an encouraging correlation with the previously reported results, hence providing additional wider and deeper empirical evidence for the validity of the recommended correction factors. The results have also demonstrated that the type (size, texture and strength) of aggregate has a negligible effect on the recommended correction factors. The concrete age at testing was demonstrated to have a potentially significant effect on the recommended correction factors. Altering the cement type can also have a significant effect on the hardened properties measured and demonstrated practically noticeable variations on the recommended correction factors. The correction factors proved to be valid regarding the effects of incorporating various blended cements in the HSC and SCC. The NSC, HSC and SCC showed an encouraging correlation with previously reported results, providing additional support, depth, breadth and rigor for the validity of the correction factors recommended.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:682517 |
Date | January 2013 |
Creators | Azizipesteh Baglo, Hamid Reza |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/12560 |
Page generated in 0.0011 seconds