In this paper, the problem of analyzing hyperspectral data is presented. The complexity of multi-dimensional data leads to the need for computer assisted data compression and labeling of important features. A brief overview of Self-Organizing Maps and their variants is given and then two possible methods of data analysis are examined. These methods are incorporated into a program derived from som_toolbox2. In this program, ASD data (data collected by an Analytical Spectral Device sensor) is read into a variable, relevant bands for discrimination between classes are extracted, and several different methods of analyzing the results are employed. A GUI was developed for easy implementation of these three stages.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5875 |
Date | 14 December 2001 |
Creators | Null, Thomas C |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0018 seconds