Return to search

Engineering the performance of optical devices using plasmonics and nonlinear organic chromophores

In this work, two optical devices, organic photovoltaics (OPVs) and optical fibers, are introduced. Each of these devices have performance drawbacks. The major drawbacks of organic photovoltaics is their low absorption rate due to bandgap mismatch with the solar spectrum as well as poor charge carrier mobility and short exciton diffusion length. In order to overcome some of these drawbacks and increase the efficiency of OPVs, we use plasmonic gold nanoparticles (AuNPs). We report 30% increase in the efficiency of bulk-heterojunction OPV after incorporation of 50 nm AuNPs. The optical, electrical, and thermal impacts of AuNPs on the performance of PVs have been investigated experimentally and using Lumerical Solutions and COMSOL Multiphysics® simulation packages. The major contributions of AuNPs is causing near field enhancement and increasing the absorption of the structure by 65%, decreasing the extracted carrier density by quenching the excitons, changing the workfunction of the structure, as well as increasing the temperature of their surrounded medium when exited at their plasmon resonance frequency. Furthermore, one of the challenges in devices made from optical fibers such as wavelength division multiplexing systems, is self-phase modulation (SPM) which is a nonlinear phenomenon. We introduce a novel method to remove the SPM in liquid core optical fibers (LCOF) using nonlinear organic chromophores with a negative third-order susceptibility. The idea of this work is to eliminate the effective nonlinear refractive index that the optical pulses are experiencing while propagating through the LCOF. Further, a novel method is introduced to characterize the third-order optical nonlinear susceptibility of organic chromophores in LCOF system. The presented method is simple, and can be extended to the characterization of other nanoscale particles such as quantum dots and plasmonic metal nanoparticles in solutions. Finally, a convenient method is presented that enables researchers to investigate the mechanisms behind photobleaching of various materials. The photostability of materials is of great importance for their acceptance in commercial systems such as organic photovoltaics, electro-optic (EO) modulators and switches, etc. This method is based on the simultaneous detection of different signals such as second-, and third-harmonic generations as well as two-, and three-photon excitation fluorescence using multi-photon microscopy.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/333214
Date January 2014
CreatorsShahin, Shiva
ContributorsNorwood, Robert A., Norwood, Robert A., Peyghambarian, Nasser, Mansuripur, Masud, Gangopadhyay, Palash
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds