With the rapid development of wireless and wireline communications, a variety of new standards and applications are emerging in the marketplace. In order to achieve higher levels of integration, RF circuits are frequently embedded into System on Chip (SoC) or System in Package (SiP) products. These developments, however, lead to new challenges in manufacturing test time and cost. Use of traditional RF test techniques requires expensive high frequency test instruments and long test time, which makes test one of the bottlenecks for reducing IC costs. This research is in the area of built-in self test technique for RF subsystems. In the test approach followed in this research, on-chip detectors are used to calculate circuits specifications, and data converters are used to collect the data for analysis by an on-chip processor. A novel on-chip amplitude detector has been designed and optimized for RF circuit specification test. By using on-chip detectors, both the system performance and specifications of the individual components can be accurately measured. On-chip measurement results need to be collected by Analog to Digital Converters (ADCs). A novel time domain, low power ADC has been designed for this purpose. The ADC architecture is based on a linear voltage controlled delay line. Using this structure results in a linear transfer function for the input dependent delay. The time delay difference is then compared to a reference to generate a digital code. Two prototype test chips were fabricated in commercial CMOS processes. One is for the RF transceiver front end with on-chip detectors; the other is for the test ADC. The 940MHz RF transceiver front-end was implemented with on-chip detectors in a 0.18 [micrometer] CMOS technology. The chips were mounted onto RF Printed Circuit Boards (PCBs), with tunable power supply and biasing knobs. The detector was characterized with measurements which show that the detector keeps linear performance over a wide input amplitude range of 500mV. Preliminary simulation and measurements show accurate transceiver performance prediction under process variations. A 300MS/s 6 bit ADC was designed using the novel time domain architecture in a 0.13 [micrometer] standard digital CMOS process. The simulation results show 36.6dB Signal to Noise Ratio (SNR), 34.1dB Signal to Noise and Distortion Ratio (SNDR) for 99MHz input, Differential Non-Linearity (DNL)<0.2 Least Significant Bit (LSB), and Integral Non-Linearity (INL)<0.5LSB. Overall chip power is 2.7mW with a 1.2V power supply. The built-in detector RF test was extended to a full transceiver RF front end test with a loop-back setup, so that measurements can be made to verify the benefits of the technique. The application of the approach to testing gain, linearity and noise figure was investigated. New detector types are also evaluated. In addition, the low-power delay-line based ADC was characterized and improved to facilitate gathering of data from the detector. Several improved ADC structures at the system level are also analyzed. The built-in detector based RF test technique enables the cost-efficient test for SoCs. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/21908 |
Date | 04 November 2013 |
Creators | Zhang, Chaoming, 1980- |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.002 seconds