Peer-to-Peer(P2P) systems have emerged as a promising paradigm to structure large scale distributed systems. They provide a robust, scalable and decentralized way to share and publish data.The unstructured P2P systems have gained much popularity in recent years for their wide applicability and simplicity. However efficient resource discovery remains a fundamental challenge for unstructured P2P networks due to the lack of a network structure. To effectively harness the power of unstructured P2P systems, the challenges in distributed knowledge management and information search need to be overcome. Current attempts to solve the problems pertaining to knowledge management and search have focused on simple term based routing indices and keyword search queries. Many P2P resource discovery applications will require more complex query functionality, as users will publish semantically rich data and need efficiently content location algorithms that find target content at moderate cost. Therefore, effective knowledge and data management techniques and search tools for information retrieval are imperative and lasting.
In my dissertation, I present a suite of protocols that assist in efficient content location and knowledge management in unstructured Peer-to-Peer overlays. The basis of these schemes is their ability to learn from past peer interactions and increasing their performance with time.My work aims to provide effective and bandwidth-efficient searching and data sharing in unstructured P2P environments. A suite of algorithms which provide peers in unstructured P2P overlays with the state necessary in order to efficiently locate, disseminate and replicate objects is presented. Also, Existing approaches to federated search are adapted and new methods are developed for semantic knowledge representation, resource selection, and knowledge evolution for efficient search in dynamic and distributed P2P network environments. Furthermore,autonomous and decentralized algorithms that reorganizes an unstructured network topology into a one with desired search-enhancing properties are proposed in a network evolution model to facilitate effective and efficient semantic search in dynamic environments.
Identifer | oai:union.ndltd.org:GEORGIA/oai:scholarworks.gsu.edu:cs_diss-1083 |
Date | 10 May 2014 |
Creators | Dissanayaka Mudiyanselage, Rasanjalee |
Publisher | ScholarWorks @ Georgia State University |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Computer Science Dissertations |
Page generated in 0.0022 seconds