Semiclassical scattering theory can be summarized as the study of connections between classical mechanics and quantum mechanics in the limit ℏ → 0 over the infinite time domain -∞ < t < ∞. After a brief discussion of Semiclassical Analysis and Scattering Theory we provide a rigorous result concerning the time propogation of a semiclassical wavepacket over the time domain -∞ < t < ∞. This result has long been known for dimension n ≥ 3, and we extend it to one and two space dimensions. Next, we present a brief mathematical discussion of the three body problem, first in classical mechanics and then in quantum mechanics. Finally using an approach similar to the semiclassical wave-packet construction we form a semiclassical approximation to the solution of the Schrödinger equation for the three-body problem over the time domain -∞ < t < ∞. This technique accounts for clustering at infinite times and should be applicable for researchers studying simple recombination problems from quantum chemistry. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/28693 |
Date | 20 August 2004 |
Creators | Rothstein, Ivan |
Contributors | Mathematics, Hagedorn, George A., Greenberg, William, Klaus, Martin, Schmittmann, Beate, Ball, Joseph A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | diss.pdf |
Page generated in 0.0018 seconds