Cette thèse est principalement consacrée à l'étude des inhomogénéités de taille nanométrique dans les systèmes magnétiques désordonnés ou dilués. La présence d'inhomogénéités, souvent mise en évidence dans de nombreux matériaux, donne lieu à des propriétés physiques intéressantes et inattendues. La possibilité de ferromagnétisme à l'ambiante dans certains matéraux a généré un grand enthousiasme en vue d'application dans la spintronique. Cependant, d'un point de vue fondamental la physique de ces systèmes reste peu explorée et mal comprise. Dans ce manuscrit, on se propose de fournir une étude théorique complète et détaillée des effets des inhomogenéités de tailles nanométriques sur les propriétés magnétiques dans les systèmes dilués. Tout d'abord, on montre que l'approche RPA locale autocohérente est l'outil le plus adapté et fiable pour un traitement approprié du désordre et de la percolation. Nous avons implémenté cet outil et étudié dans un premier temps, les propriétés magnétiques dynamiques d'un modèle Heisenberg dilué (couplages premiers voisins) sur un reseau cubique simple. Nous avons reproduit précisémment la disparition de l'ordre à longue portée au seuil de percolation et comparé ce travail à des études précédentes. Dans le cadre d'un Hamiltonien minimal (modèle $V$-$J$) nous avons ensuite étudié en détails les propriétés magnétiques de (Ga,Mn)As (température critique, excitations magnétiques, stiffness,..). Nous avons obtenu de très bon accords avec les calculs textit{ab initio} et les résulats expérimentaux. Finalement, nous avons étudié les effets des inhomogénéités dans les sytèmes dilués. Nous avons montré, qu'inclure des inhomogenéités pourrait s'averer être une voie très efficace et prometteuse pour dépasser l'ambiante dans de nombreux matériaux. Nous avons pu obtenir une augmentation colossale de la température critique dans certains cas comparée à celle des systèmes dilués homogènes. Nous avons atteint une augmentation de 1600% dans certains cas. Nous avons également analysé les effets des inhomogénéités sur les courbes d'aimantations, elles sont inhabituelles et peu conventionelles dans ces systèmes. Les spectres d'excitations magnétiques sont très complexes, avec des structures très riches, et présentent de nombreux modes discrets à haute energie. De plus, nos calculs ont montré que la ``spin-stiffness" est fortement supprimé par l'introduction d'inhomogénéités. Il reste encore de nombreuses voies à explorer, ce travail devrait servir de base à de futures études théoriques et expérimentales des systèmes inhomogènes. / This thesis is mainly devoted to the study of nanoscale inhomogeneities in diluted and disordered magnetic systems. The presence of inhomogeneities was detected experimentally in several disordered systems which in turn gave rise to various interesting and unexpected properties. In particular, the possibility of room-temperature ferromagnetism generated a huge thrust in these inhomogeneous materials for potential spintronics applications. However, a proper theoretical understanding of the underlying physics was a longstanding debate. In this manuscript we provide a detailed theoretical account of the effects of these nanoscale inhomogeneities on the magnetic properties of diluted systems. First we show the importance of disorder effects in these systems, and the need to treat them in an appropriate manner. The self-consistent local RPA (SC-LRPA) theory, based on finite temperature Green's function, is found to be the most reliable and accurate tool for this. We have successfully implemented the SC-LRPA to study the dynamical magnetic properties of the 3D nearest-neighbor diluted Heisenberg model. The percolation threshold is found to be reproduced exactly in comparison with previous existing studies. Following this, we discuss the essential role of a minimal model approach to study diluted magnetic systems. The one-band $V$-$J$ model, has been used to calculate the Curie temperature and the spin excitation spectrum in (Ga,Mn)As. An excellent agreement is obtained with first principles based calculations as well as experiments. Finally we propose an innovative path to room-temperature ferromagnetism in these materials, by nanoscale cluster inclusion. We find a colossal increase in $T_C$ of up to 1600% compared to the homogeneous case in certain cases. Also the spontaneous magnetization is found to exhibit anomalous non-mean-field like behavior in the presence of inhomogeneities. In addition we observe a complex nature of the magnon excitation spectrum with prominent features appearing at high energies, which is drastically different from the homogeneous case. Our study interestingly reveals a strong suppression of the spin-stiffness in these inhomogeneous systems. The results indicate toward the strong complexities associated with the interplay/competition between several typical length scales. We believe this work would strongly motivate detailed experimental as well as theoretical studies in this direction in the near future.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENY109 |
Date | 26 June 2012 |
Creators | Chakraborty, Akash |
Contributors | Grenoble, Bouzerar, Georges |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds