We have developed a placement-aware 3-D floorplanning algorithm that enables additional wirelength reduction by planning for 3-D placement of logic gates in selected circuit modules during the floorplanning stage. Thus it also bridges the existing gap between 3-D floorplanning and 3-D placement. To reduce the solution space of 3-D floorplanning which is known to be an NP-hard problem, we derive a set of feasibility conditions on the topological representation of a floorplan. In addition, we have designed a fast module packing algorithm that satisfies a set of constraints for placement-aware 3-D floorplanning. Furthermore, we have designed an efficient evolutionary algorithm that is used in the proposed 3-D floorplanning algorithm for multi-objective combinatorial optimization. Our results show that the proposed placement-aware 3-D floorplanning algorithm is very fast, and it reduces the system level total wirelength by 9.8% compared to existing state-of-the-art floorplanning tools that do not plan for 3-D placement of floorplanning modules.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-3814 |
Date | 01 January 2011 |
Creators | Nain, Rajeev Kumar |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0016 seconds