Machine learning is evidenced as a research area with the main purpose of developing computational methods that are capable of learning with their previously acquired experiences. Although a large amount of machine learning techniques has been proposed and successfully applied in real systems, there are still many challenging issues, which need be addressed. In the last years, an increasing interest in techniques based on complex networks (large-scale graphs with nontrivial connection patterns) has been verified. This emergence is explained by the inherent advantages provided by the complex network representation, which is able to capture the spatial, topological and functional relations of the data. In this work, we investigate the new features and possible advantages offered by complex networks in the machine learning domain. In fact, we do show that the network-based approach really brings interesting features for supervised, semisupervised, and unsupervised learning. Specifically, we reformulate a previously proposed particle competition technique for both unsupervised and semisupervised learning using a stochastic nonlinear dynamical system. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition to that, data reliability issues are explored in semisupervised learning. Such matter has practical importance and is found to be of little investigation in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this work, we propose a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the semantic meaning of the data, but also is able to improve the performance of traditional classification techniques. Finally, it is expected that this study will contribute, in a relevant manner, to the machine learning area / Aprendizado de máquina figura-se como uma área de pesquisa que visa a desenvolver métodos computacionais capazes de aprender com a experiência. Embora uma grande quantidade de técnicas de aprendizado de máquina foi proposta e aplicada, com sucesso, em sistemas reais, existem ainda inúmeros problemas desafiantes que necessitam ser explorados. Nos últimos anos, um crescente interesse em técnicas baseadas em redes complexas (grafos de larga escala com padrões de conexão não triviais) foi verificado. Essa emergência é explicada pelas inerentes vantagens que a representação em redes complexas traz, sendo capazes de capturar as relações espaciais, topológicas e funcionais dos dados. Nesta tese, serão investigadas as possíveis vantagens oferecidas por redes complexas quando utilizadas no domínio de aprendizado de máquina. De fato, será mostrado que a abordagem por redes realmente proporciona melhorias nos aprendizados supervisionado, semissupervisionado e não supervisionado. Especificamente, será reformulada uma técnica de competição de partículas para o aprendizado não supervisionado e semissupervisionado por meio da utilização de um sistema dinâmico estocástico não linear. Em complemento, uma análise analítica de tal modelo será desenvolvida, permitindo o entendimento evolucional do modelo no tempo. Além disso, a questão de confiabilidade de dados será investigada no aprendizado semissupervisionado. Tal tópico tem importância prática e é pouco estudado na literatura. Com o objetivo de validar essas técnicas em problemas reais, simulações computacionais em bases de dados consagradas pela literatura serão conduzidas. Ainda nesse trabalho, será proposta uma técnica híbrica de classificação supervisionada que combina tanto o aprendizado de baixo como de alto nível. O termo de baixo nível pode ser implementado por qualquer técnica de classificação tradicional, enquanto que o termo de alto nível é realizado pela extração das características de uma rede construída a partir dos dados de entrada. Nesse contexto, aquele classifica as instâncias de teste segundo qualidades físicas, enquanto que esse estima a conformidade da instância de teste com a formação de padrões dos dados. Os estudos aqui desenvolvidos mostram que o método proposto pode melhorar o desempenho de técnicas tradicionais de classificação, além de permitir uma classificação de acordo com o significado semântico dos dados. Enfim, acredita-se que este estudo possa gerar contribuições relevantes para a área de aprendizado de máquina.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19042013-104641 |
Date | 13 December 2012 |
Creators | Thiago Christiano Silva |
Contributors | Zhao Liang, Luciano da Fontoura Costa, Estevam Rafael Hruschka Júnior, Solange Oliveira Rezende, Marley Maria Bernardes Rebuzzi Vellasco |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds