Return to search

Stabilité des structures minces et sensibilité aux imperfections par la Méthode Asymptotique Numérique

Ce travail est une contribution à l'analyse de stabilité et de sensibilité aux imperfections des structures minces, ainsi qu'au développement de méthodes numériques performantes pour le non-linéaire. La courbe de réduction de charge critique, qui permet d'estimer le degré de sensibilité d'une structure à un défaut donné, est obtenue grâce à un suivi numérique des courbes de points limites. L'algorithme sous-jacent repose sur la résolution d'un système non-linéaire augmenté. Ce système est composé des équations d'équilibre de la structure et d'une équation qui caractérise les points critiques, dans lesquelles l'amplitude de l'imperfection est un paramètre additionnel. Le modèle utilisé s'appuie sur un élément de coque moderne et performant, basé sur le concept EAS. Il autorise les grandes rotations et la dilatation suivant l'épaisseur, prend en compte de manière exacte les non-linéarités géométriques, et intègre les non-linéarités matérielles par le biais de relations de comportement 3D en chaque point de Gauss. Au terme de ce travail, on dispose d'un outil complet d'analyse de sensibilité aux imperfections, entièrement basé sur la Méthode Asymptotique Numérique, dont les principales fonctionnalités sont : (1) le calcul de branches d'équilibres non-linéaires au moyen d'une méthode de continuation, (2) la détection des points singuliers le long d'une branche d'équilibre, (3) le suivi de points limites, qui permet de mener des études de sensibilité sur des structures 3D, pour des imperfections d'ensemble ou localisées et des défauts de forme ou d'épaisseur.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00593941
Date29 October 2001
CreatorsBaguet, Sébastien
PublisherUniversité de la Méditerranée - Aix-Marseille II
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds