Return to search

Load-enhanced lamb wave methods for the in situ detection, localization and characterization of damage

A load-enhanced methodology has been proposed to enable the in situ detection, localization, and characterization of damage in metallic plate-like structures using Lamb waves. A baseline-free load-differential method using the delay-and-sum imaging algorithm is proposed for defect detection and localization. The term “load-differential” refers to the comparison of recorded ultrasonic signals at various levels of stress. Defect characterization is achieved by incorporating expected scattering information of guided waves interacting with defects into the minimum variance imaging algorithm, and a method for estimating such scattering patterns from the measurements of a sparse transducer array is developed. The estimation method includes signal preprocessing, extracting initial scattering values from baseline subtraction results, and obtaining the complete scattering matrix by applying radial basis function interpolation. The factors that cause estimation errors, such as the shape parameter used to form the basis function and the filling distance used in the interpolation, are discussed.
The estimated scattering patterns from sparse array measurements agree reasonably well with laser wavefield data and are further used in the load-enhanced method. The results from fatigue tests show that the load-enhanced method is capable of detecting cracks, providing reasonable estimates of their localizations and orientations, and discriminating them from drilled holes, disbonds, and fastener tightness variations.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54859
Date27 May 2016
CreatorsChen, Xin
ContributorsMichaels, Jennifer E.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0021 seconds