Lifting surfaces of unmanned aerial vehicles (UAV) are often operated in low Reynolds number (Re) ranges, wherein the transition of boundary layer from laminar-to-turbulent plays a more significant role than in high-Re aerodynamics applications. This poses a challenge for traditional computational fluid dynamics (CFD) simulations, since typical modeling approaches assume either fully laminar or fully turbulent flow. In particular, the boundary layer state must be accurately predicted to successfully determine the separation behavior which significantly influences the aerodynamic characteristics of the airfoil. Reynolds-averaged Navier-Stokes (RANS) based CFD simulations of an elliptic airfoil are performed for time-varying angles of attack, and results are used to elucidate relevant flow physics and aerodynamic data for an elliptic airfoil under realistic operating conditions. Results are also used to evaluate the performance of several different RANS-based turbulence modeling approaches for this class of flowfield.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2141 |
Date | 11 August 2012 |
Creators | Chitta, Varun |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0018 seconds