Return to search

Delipidation Treatments for Large-Scale Protein Purification Processing

Triglycerides are the majority lipid component of most biochemical mixtures and are virtually water insoluble. Lipid removal is desired prior to protein purification processing to decrease nonspecific fouling of downstream chromatographic matrices. Transgenic pig milk was used as a model system to study delipidation from therapeutic protein sources. The majority of triglycerides was extracted from stable lipid micelles and removed with a method that can be incorporated in downstream protein purification processing without denaturing the target protein. An efficient delipidation treatment used TNBP, a non-polar solvent, to extract lipid micelles and then phase transfer milk lipids into a TNBP-swelled dextran particulate. A batch incubation of a whey/TNBP mixture with pre-swollen Sephadex LH-20 or hydroxyalkoxypropyl dextran (HAPD) beads at 4 C for 24 hours removed 67 + 2 % (0.645 mg triglycerides/ml Sephadex LH-20) and 71 o + 1 % (0.628 mg triglycerides/ml HAPD) of the triglycerides present in the skimmed transgenic whey, respectively. Fully swollen beads removed 20% more triglycerides than beads which were wetted but not swollen in TNBP, indicating that a larger phase volume and internal adsorption of the lipids onto the Sephadex matrix dominates over surface adsorption. Polyclonal ELISAs indicated that 89 + 6% of the recombinant human Protein C was still present in the transgenic whey after this delipidation treatment, indicating this treatment did not denature or harm the target protein. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36512
Date12 August 1998
CreatorsGardner, Tara Conti
ContributorsChemical Engineering, Velander, William H., Davis, Richey M., Conger, William L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationetd.pdf

Page generated in 0.0018 seconds