Este trabalho apresenta o modelo numérico de um banco experimental onde foi feita uma avaliação sobre as características estáticas do eixo e a identificação das características dinâmicas de um mancal aerostático cerâmico poroso. Nos últimos anos, o uso da cerâmica estrutural tem crescido significativamente para a concepção e fabricação de peças mecânicas. O uso da cerâmica porosa como restritor em mancais aerostáticos pode melhorar o seu desempenho relacionado com o desgaste, a estabilidade térmica, a rigidez e capacidade de carga, permitindo que eixos trabalhem com precisão a uma velocidade acima de 20.000 rpm, com pequenas folgas (40 microns). A fim de investigar este tipo de mancal foram desenvolvidas análises estáticas para obter a rigidez do eixo de suporte, assim como do mancal aerostático cerâmico poroso e identificação dinâmica para o banco experimental. As análises estáticas indicaram a rigidez do eixo e do mancal aerostático de 20,1 kN/mm e 2,6 kN/mm, respectivamente. As análises dinâmicas indicaram que a primeira frequência natural do rotor está próximo de 1365,9 Hz, o que é muito mais elevada do que a primeira frequência natural da mancal aerostático cerâmico poroso cujo valor é 775,0 Hz. Pode-se concluir que a configuração geométrica e condições de suporte escolhidos permitem uma condição robusta para prosseguir com os testes experimentais para obter as características dinâmicas do mancal poroso. / This work presents the numerical model of an experimental set-up where it was made an evaluation on the static characteristics of the shaft and the identification of the dynamic characteristics for an aerostatic radial porous bearing. In recent years, the use of the structural ceramic has grown significantly for design and manufacturing of mechanical parts. The use of ceramic porous as restrictor in aerostatic bearings can improve its perform related to the wear, thermal stability, stiffness and load capacity allowing that spindles work with precision at speed above 20.000 rpm with small clearances (40 microns). In order to investigate this kind of bearing were developed static analyses to obtain the stiffness of the support shaft, as well as aerostatic porous bearing and dynamic identification for experimental set-up. The static analysis indicated stiffness of shaft and aerostatic porous bearing of 20.1 kN/mm and 2.6 kN/mm, respectively. The dynamic analysis indicated that the first natural frequency of the rotor is close to 1365.9 Hz, which is much higher than the first natural frequency of the aerostatic ceramic porous bearing whose value is 775.0 Hz. One can conclude that geometrical configuration and support conditions choosen allow a robust condition to proceed in experimental tests to obtain dynamic characteristics of the porous bearing.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30112017-145830 |
Date | 28 May 2014 |
Creators | Chiarelli, Luis Renato |
Contributors | Silveira, Zilda de Castro |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds