Return to search

Control strategy for a mono-inverter multi-PMSM system - Stability and efficiency

During these decades, Permanent Magnet Synchronous Motor (PMSM) has become a vital part of military, industry and civil applications due to the advantages of high power density, high efficiency, high reliability and simple structure, small volume and light weight. Sometimes, multiple PMSMs are used to carry out cooperative functions. For example, the bogie of a locomotive, the flight control surface of an airplane. These PMSMs usually operates at the same speed. To reduce the volume and weight, an idea of sharing the static power conversion devices, which is called Mono-Inverter Multi-PMSM system (MIMPMSM), is raised. Although many researchers have given different controller solutions for the MIMPMSM system, most of them are not clear in the aspects of system stability and efficiency issues. This has become the biggest obstacle to the practical use of MIMPMSM. Oriented with these problems, starting with a MIMPMSM system with 2 motors, in the first step, we have tested some control strategies by an experiment to verify the feasibility and performance of them. In final, based on the experiment data, we have figured that the overconstraint problem exists in some control strategies. Then, an analysis and controller design based on steady-state model of a Mono-Inverter Dual-PMSM (MIDPMSM) system is carried out.By studying the solution existence problem of the steady-state model, we give out the design guideline to the controller structure. Combining the open-loop stability and steady-state solution, the region of controllability and stability is obtained. Lagrange Multiplier is used develop theexpression of efficiency-optimal steady-staterelated to torque and speed. The experiment has shown that the efficiency of the new controller has improved significantly. Meanwhile, we have explored the influence of parameter variation in system stability and efficiency-optimization. The variation will influence the stability region. But its influence can be eliminated by using Master- Slave strategy. On the other hand, in the aspect of efficiency optimization, the simulation results have shown that parameter mismatch, especially the permeant flux, can cause high efficiency loss. In the last step, this controller is also adapted to a MIMPMSM system with more than two motors. The simulation results demonstrate the effectiveness.

Identiferoai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:19624
Date15 December 2017
CreatorsLiu, Tianyi
ContributorsInstitut National Polytechnique de Toulouse - INPT (FRANCE), Laboratoire Plasma et Conversion d'Energie - LAPLACE (Toulouse, France)
Source SetsUniversité de Toulouse
LanguageEnglish
Detected LanguageEnglish
TypePhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://oatao.univ-toulouse.fr/19624/

Page generated in 0.0019 seconds