Wireless communication companies require to use the frequency spectrum to operate. Both frequency licenses and infrastructure to reuse frequencies are costly resources subject to increasing demand. This work introduces a novel multiplexing method that saves spectrum called Spectral Shape Division Multiplexing (SSDM). Under certain configurations, SSDM displays higher flexibility and throughput than other spectrally efficient methods.
SSDM defines the structure of a wireless multi-carrier by software. It is similar to Orthogonal Frequency Division Multiplexing (OFDM) in that both use overlapped sub-carriers to make efficient use of allocated spectrum. However, SSDM has several advantages. Where OFDM organizes sub-carriers orthogonally, SSDM allows arbitrary frequency steps enabling higher spectral efficiency. Similarly, while OFDM and other spectrally efficient methods use sinusoidal pulse forms, SSDM can use non-standard pulses providing a greater control of the carrier. In this thesis, a SSDM transceiver is implemented to reduce the spectrum utilization. SSDM presents an increase in spectral efficiency of 20% average with respect to OFDM. The cost of this gain is higher computational speed and signal to noise ratio.
The mathematical models and possible architecture for an SSDM system with sinusoidal pulses is developed. The modem is compared with other spectrally efficient methods. Similarly, the trade-offs between spectral efficiency, bit-error rates, dimension of the carrier and sub-carrier spacing are subject of analysis.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1839 |
Date | 01 June 2012 |
Creators | Holguín-Sánchez, Fausto Daniel |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.001 seconds