Return to search

Analiza shear lag uticaja kod tankozidnih kompozitnih nosača otvoreno-zatvorenogpoprečnog preseka / Shear lag analysis of thin-walled composite beams with open-closed cross section

<p>U radu su izvedene diferencijalne jednačine tankozidnog kompozitnog štapa proizvoljnog poprečnog preseka, primenom principa virtualnih pomeranja, a polazeći od funkcije deplanacije koju je predložio A. Prokić, za tankozidne štapove homogenog poprečnog preseka. Ona omogućava jedinstvenu analizu tankozidnih štapova otvorenog i zatvorenog poprečnog preseka, pretpostavka o zanemarenju klizanja u srednjoj površi štapa nije<br />neophodna, pa se smičući naponi određuju direktno iz odgovarajućih deformacija. Raspodela normalnih napona nije više određena sektorskom koordinatom već parametrima pomeranja čvornih tačaka, i u opštem slučaju je promenljiva od preseka do preseka, što omogućuje registrovanje i analizu shear lag uticaja, koji se klasičnom teorijom tankozidnih nosača ne može opisati. Kao što je poznato, shear lag uticaj predstavlja neravnomernu<br />raspodelu normalnih napona u pojasevima, s tim što se maksimalna vrednost javlja na mestu spoja pojasa sa rebrima, i u opštem slučaju je veća od vrednosti napona koja se dobija klasičnom teorijom savijanja štapova zasnovanoj na Bernoullijevoj hipotezi. To je posebno izraženo kod štapova napregnutih na savijanje kod kojih dolazi do značajne deplanacije poprečnog preseka.<br />Dobijeni sistem diferencijalnih jednačina se ne može rešiti u zatvorenom obliku te se pristupilo numeričkoj metodi, odnosno primeni metode konačnih elemenata. Definisana su dva tipa elementa sa različitim polaznim pretpostavkama. Prvi tip elementa zasnovan je na teoriji Timoshenka, odnosno uticaj transverzalnih sila na deformaciju se uzima u obzir. Drugi tip elementa zanemaruje uticaj transverzalnih sila na deformaciju, odnosno usvaja se pretpostavka da poprečni preseci i nakon deformacije ostaju ravni i upravni<br />na srednju liniju štapa. Kao dokaz tačnosti prethodno izvedenih teorijskih razmatranja urađen je niz primera pomoću programa napisanog u programskom jeziku C.</p> / <p>Differential equations of thin-walled composite beams of arbitrary cross section were<br />derived, using the principle of virtual displacements and starting from function of deplanation suggested by A. Prokic, for thin-walled beams of homogeneous cross section. It enables unique analysis thin-walled beams of open and closed cross section, assumption of neglecting shear strain in the middle surface is not necessary and shear stresses can be calculated directly from the strains. Distribution of longitudinal stresses is not defined by warping function, but parameters of longitudinal displacement, and in general case it is variable of section to section, that enables registering and analysis of shear lag, which classical theory of thin-walled beams is unable to reflect. As it is known, shear lag effect presents a non-uniform distribution of normal stresses in the flanges, maximal values are on the connection of flange and web, in general case it is larger from the value of stress obtained by classical theory of beams based on the Bernoulli hypothesis. It is especially<br />expressed at beams subjected to bending where deplanation of cross section is significant. Derived system of differential equations can not be solved in closed form solution and it was accessed to numerical method, respectively on the finite element method. Two types of element with different starting settings were defined. First type of element is based on the theory of Timoshenko, apropos the influence of transversal forces on deformation were taken into account. The second type of element neglects influence of transversal forces on deformation, concerning assumption that cross section remain plane and orthogonal on the middle line is adopted. A number of numerical examples are calculated by a computer program written in program language C as a proof of accuracy of previously derived theoretical reviews.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)100390
Date24 June 2016
CreatorsVojnić Purčar Martina
ContributorsProkić Aleksandar, Folić Radomir, Bešević Miroslav, Mandić Rastislav, Peić Hajnalka
PublisherUniverzitet u Novom Sadu, Građevinski fakultet u Subotici, University of Novi Sad, Faculty of Civil Engineering at Subotica
Source SetsUniversity of Novi Sad
LanguageSerbian
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0023 seconds