For numerical modeling and predictive analysis of warm hydroforming, better understanding of material properties (i.e. Flow curves) is required at elevated temperatures and high strains. Hydraulic bulge testing is a suitable method to obtain this information. However, analysis of the test data is not standardized as there are numerous approaches developed and adopted throughout the years. In this study, first, different approaches for hydraulic bulge analysis were compared with stepwise experiments to determine the best combination of approaches in obtaining accurate flow curves at different temperatures and strain rates. Then, three different grades of stainless steels (AISI 201, 301 and 304) were tested at various hydroforming conditions to determine the effect of pressure, temperature and strain rate on formability (i.e. cavity filling and thinning). These experimental findings were then used to be compared with predicted values from FEA. Results showed that material model works accurately in predicting the formability of materials in warm hydroforming.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2664 |
Date | 05 December 2008 |
Creators | Billur, Eren |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0018 seconds