The Symmetric Meixner-Pollaczek polynomials are considered. We denote these polynomials in this thesis by pn(λ)(x) instead of the standard notation pn(λ) (x/2, π/2), where λ > 0. The limiting case of these sequences of polynomials pn(0) (x) =limλ→0 pn(λ)(x), is obtained, and is shown to be an orthogonal sequence in the strip, S = {z ∈ ℂ : −1≤ℭ (z)≤1}. From the point of view of Umbral Calculus, this sequence has a special property that makes it unique in the Symmetric Meixner-Pollaczek class of polynomials: it is of convolution type. A convolution type sequence of polynomials has a unique associated operator called a delta operator. Such an operator is found for pn(0) (x), and its integral representation is developed. A convolution type sequence of polynomials may have associated Sheffer sequences of polynomials. The set of associated Sheffer sequences of the sequence pn(0)(x) is obtained, and is found to be ℙ = {{pn(λ) (x)} =0 : λ ∈ R}. The major properties of these sequences of polynomials are studied. The polynomials {pn(λ) (x)}∞n=0, λ < 0, are not orthogonal polynomials on the real line with respect to any positive real measure for failing to satisfy Favard’s three term recurrence relation condition. For every λ ≤ 0, an associated nonstandard inner product is defined with respect to which pn(λ)(x) is orthogonal. Finally, the connection and linearization problems for the Symmetric Meixner-Pollaczek polynomials are solved. In solving the connection problem the convolution property of the polynomials is exploited, which in turn helps to solve the general linearization problem.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-3501 |
Date | January 2003 |
Creators | Araaya, Tsehaye |
Publisher | Uppsala universitet, Matematiska institutionen, Uppsala : Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Uppsala Dissertations in Mathematics, 1401-2049 ; 27 |
Page generated in 0.0023 seconds