Return to search

Driver-gas Tailoring For Test-time Extension Using Unconventional Driver Mixtures

To study combustion chemistry at low temperatures in a shock tube, it is of great importance to increase experimental test times, and this can be done by tailoring the interface between the driver and driven gases. Using unconventional driver-gas tailoring with the assistance of tailoring curves, shock-tube test times were increased from 1 to 15 ms for reflected-shock temperatures below 1000 K. Provided in this thesis is the introduction of tailoring curves, produced from a 1-D perfect gas model for a wide range of driver gases and the production and demonstration of successful driver mixtures containing helium combined with either propane or carbon dioxide. The He/CO2 and He/C3H8 driver mixtures provide a unique way to produce a tailored interface and, hence, longer test times, when facility modification is not an option. The tailoring curves can be used to guide future applications of this technique to other configurations. Nonreacting validation experiments using driver mixtures identified from the tailoring curves were performed over a range of reflected-shock temperatures from approximately 800 to 1400 K, and some examples of ignition-time experiments that could not have otherwise been performed are presented.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1991
Date01 January 2006
CreatorsAmadio, Anthony
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0018 seconds