The main aim of this thesis is flow shop and job shop scheduling problem in logistics warehouses. Managing and scheduling works is currently often problem. There is no simple solution due to complexity of this problem. This problem must be resolved because of a lack efficiency of work with a higher load such as during the christmas holidays. This paper describes the methods used to solve this problem focusing mainly on the use of search algorithms, evolutionary algorithms, specifically grammar guided genetic programming. This paper describes the problem of job shop scheduling on a simple theoretical example. The implemented algorithm for solving this problem was subjected to tests inspired on data from real warehouse, as well as synthetically created tests with more jobs and a greater number of workers. Synthetic tests were generated randomly. All tests were therefore run several times and the results were averaged. In conclusion of this work are presented the results of the algorithm and the optimum parameter settings for different sizes of problems and requirements for the solution. Genetic algorithm has been extended to calculate fitness of individuals with regard to number of collisions, extended to use priority rules during run of evolution, and some parts of algorithm was parallelized.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220620 |
Date | January 2014 |
Creators | Povoda, Lukáš |
Contributors | Uher, Václav, Karásek, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds