A controlled laboratory experiment was undertaken to simulate varying swash zone characteristics and sensor-target geometry found in digital images collected by ARGUS coastal imaging systems. Using a hyperspectral sensor, reflectance data were integrated over the respective red, blue and green wavelengths corresponding to a standard ARGUS video imaging sensor. The dominant swash zone parameters affecting shoreline detection were found to be the presence or absence of surface foam, site-specific sediment characteristics (especially colour), and water depth. Winter versus summer solar elevation and the sensor zenith were also found to affect the cross-shore location of the detected waterline. With this new information, site- and time-specific corrections can be applied to coastal digital imagery, to improve the confidence of shoreline detection.
Identifer | oai:union.ndltd.org:ADTP/204966 |
Date | January 2008 |
Creators | Howard, Elizabeth Helen, Civil & Environmental Engineering, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Civil & Environmental Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0016 seconds