Return to search

Geometry of configuration space in Markov chain Monte Carlo methods and the worldvolume approach to the tempered Lefschetz thimble method / マルコフ連鎖モンテカルロ法の配位空間の幾何と焼き戻しレフシェッツ・シンブル法における世界体積の方法

京都大学 / 新制・課程博士 / 博士(理学) / 甲第23003号 / 理博第4680号 / 新制||理||1671(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 福間 將文, 教授 畑 浩之, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Identiferoai:union.ndltd.org:kyoto-u.ac.jp/oai:repository.kulib.kyoto-u.ac.jp:2433/263464
Date23 March 2021
CreatorsMatsumoto, Nobuyuki
Contributors松本, 信行, マツモト, ノブユキ
PublisherKyoto University, 京都大学
Source SetsKyoto University
LanguageEnglish
Detected LanguageEnglish
Typedoctoral thesis, Thesis or Dissertation
Rights学位規則第9条第2項により要約公開, "Distance between configurations in Markov chain Monte Carlo simulations, " JHEP 12, 001 (2017), doi:10.1007/JHEP12(2017)001 "Emergence of AdS geometry in the simulated tempering algorithm, " JHEP 1811, 060 (2018), doi:10.1007/JHEP11(2018)060 "Distance between configurations in MCMC simulations and the geometrical optimization of the tempering algorithms, " PoS LATTICE2019, 168 (2019), doi:10.22323/1.363.0168 "Emergent quantum geometry from stochastic random matrices, " PoS CORFU2019, 180 (2020), doi:10.22323/1.376.0180 "Applying the tempered Lefschetz thimble method to the Hubbard model away from half filling, " Phys. Rev. D 100, no. 11, 114510 (2019), doi:10.1103/PhysRevD.100.114510 "Tempered Lefschetz thimble method and its application to the Hubbard model away from half filling, " PoS LATTICE2019, 090 (2019), doi:10.22323/1.363.0090 "Worldvolume approach to the tempered Lefschetz thimble method, " PTEPへ掲載決定済み, doi:10.1093/ptep/ptab010
Relationhttps://doi.org/10.1007/JHEP12(2017)001, https://doi.org/10.1007/JHEP11(2018)060, https://doi.org/10.22323/1.363.0168, https://doi.org/10.22323/1.376.0180, https://doi.org/10.1103/PhysRevD.100.114510, https://doi.org/10.22323/1.363.0090, https://doi.org/10.1093/ptep/ptab010

Page generated in 0.002 seconds