Return to search

Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications

This work focuses on the evaluation of the feasibility to employ silicon (Si) nanowire based parallel arrays of Schottky-barrier field effect transistors (SB-FETs) as transducers for potentiometric biosensors and their overall performance as building blocks for novel functional electronics. Nanowire parallel arrays of SB-FETs were produced and electrically characterized during this work. Nominally undoped Si nanowires with mean diameter of 20nm were synthesized by chemical vapor deposition (CVD) driven bottom-up growth and subsequently transferred via a printing process to Si/SiO2 chip substrates. Thereby, dense parallel aligned nanowire arrays are created. After dry oxidation of the nanowires, standard photolithography and deposition methods are employed to contact several hundred nanowires with interdigitated Ni electrodes in parallel. A silicidation step is used to produce axially intruded Ni-silicide (metallic) phases with a very abrupt interface to the Si (semiconducting) segment. Acting as front gate dielectric, the chip surface is entirely covered by an Al2O3 layer. For sensor applications, this layer further serves as electrical isolation of the electrodes and protects them from corrosion in electrolytes.

Fabricated devices are part of the SOI (Si on insulator) transistor family with top (front) and back gate and exhibit ambipolar rectifying behavior. The top gate exhibits omega geometry with a 20nm thin Al2O3 dielectric, the back gate planar geometry with a 400nm thick SiO2 dielectric. The influence of both gates on the charge transport is summarized in the statistical analysis of transfer and output characteristic for 7 different lengths (for each 20 devices) of the Si conduction channel. A nonlinear scaling of on-currents and transconductance with channel length is revealed. Off-currents are influenced from both p- and n-type conduction at the same time. Increasing lateral electric fields (LEF) lead to a decline of suppression capability of both p- and n-currents by a single gate. This is reflected in a deteriorated swing and higher off-current towards decreasing channel lengths (increasing LEF). However, by individual gating of Schottky junction and channel, p- and n-type currents can be controlled individually. Both charge carrier types, p and n, can be suppressed efficiently at the same time leading to low off-currents and high on/off current ratio for all investigated channel lengths. This is achieved by a combined top and back double gate architecture, for which the back gate controls the Schottky junction resistance. It is demonstrated that a fixed high Schottky junction serial resistance, severely impairs the transconductance. However, the transconductance can be significantly increased by lowering this resistance via the back gate, enhancing the transducer performance significantly.

Al2O3 covered SB-FETs were employed as pH sensors to evaluate their performance and signal to noise ratio (SNR). Current modulation per pH was observed to be directly proportional to the transconductance. The transistor related signal to noise ratio (SNR) is thus proportional to the transconductance to current noise ratio. Device noise was characterized and found to limit the SNR already below the peak transconductance regime. Statistical analysis showed that the nanowire SB-FET transconductance and noise both scale proportional with the current. Therefore, the SNR was found to be independent on the nanowire channel lengths under investigation.

The high process yield of nanowire SB-FET parallel array fabrication close to hundred percent enables this platform to be used for simple logic and biosensor elements. Because of the low fabrication temperatures needed, the foundation is laid to produce complementary logic with undoped Si on flexible substrates. For previously reported results, the presence of Schottky junctions severely impaired the transconductance, restricting the applicability of SB-FETs as transducers. This work shows, that an electric decoupling of the Schottky junction can reduce these restrictions, making SB-FETs feasible for sensor applications.:Table of contents 11
List of figures 14
Abbreviations 15
Introduction 17
1 Fundamentals 23
1.1 Bottom up growth of Si nanowires 23
1.2 MOS and Schottky barrier transistor theory 25
1.2.1 MOSFET: Metal Oxide Semiconductor Field Effect Transistor 25
1.2.2 Gate coupling 27
1.2.3 Oxide charges and flatband voltage 29
1.2.4 Charge trapping and charge-voltage hysteresis 30
1.2.5 Schottky barrier 32
1.2.6 SB-FETs 34
1.3 ISFET and BioFET technology 36
1.3.1 ISFET and BioFET working principle 37
1.3.2 Noise in ISFETs 41
2 Fabrication of Schottky barrier FET parallel arrays 43
2.1 Starting point of device fabrication 43
2.2 Parallel array transistor and sensor devices 44
2.2.1 Gold nano particle deposition 45
2.2.2 Bottom-up growth of Si nanowires 46
2.2.3 Nanowire deposition methods 48
Langmuir-Blodgett 48
Adhesion tape transfer 49
Contact printing/ smearing transfer 49
2.2.4 Nanowire oxidation 50
2.2.5 Chip design 51
2.2.6 UV lithography 53
2.2.7 Oxide removal and metal deposition 54
2.2.8 Nanowire silicidation 54
2.2.9 Ionsensitive, top gate dielectric and contact passivation 56
2.2.10 On chip reference electrode 57
3 Electrical characterization 59
3.1 Electrical characterization methods 59
3.2 Transfer characteristics 60
3.2.1 Silicidation: intruded silicide contacts 62
3.2.2 Scaling of the conduction channel length 63
3.2.3 Flatband voltage, built-in potentials, fixed and trapped oxide charge 71
3.2.4 Surface effects on the channel potential of back gated SB-FETs 72
3.3 Charge traps, hysteresis and Vth drifts 73
3.3.1 Screening of back gate fields by water molecules 74
3.3.2 Native oxides: unipolarity by water promoted charge trapping 76
3.3.3 Hysteresis for thermally grown oxide back and top gate devices 78
3.3.4 Hysteresis reduction by post anneal 79
3.4 Output characteristics 80
3.4.1 Unipolar output characteristics of nanowires with native oxide shell 80
3.4.2 Ambipolar output characteristics of nanowires with dry oxidized shell 82
3.5 Temperature dependence 84
3.6 Transistor noise 86
4 pH measurements 91
4.1 Experimental setup and data analysis method 91
4.2 Transfer function in electrolyte with liquid gate 92
4.3 Sensor response on pH 92
4.4 Sensor signal drifts 96
5 Schottky junction impact on sensitivity 97
5.1 Schottky junction electrostatic decoupling in solution 97
5.1.1 Experimental setup in solution 98
5.1.2 SU8/Al2O3 passivated junctions in electrolyte 98
5.2 Meander shaped gates without Schottky junction overlap 101
5.2.1 Separated gating of Schottky junctions and channel 102
5.2.2 Enhanced transducer performance by reduced Schottky junction resistance 104
6 Summary and Outlook 107
List of publications 111
Bibliography 126
Acknowledgements 127 / Diese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient.

Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich.

Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen.

Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt.:Table of contents 11
List of figures 14
Abbreviations 15
Introduction 17
1 Fundamentals 23
1.1 Bottom up growth of Si nanowires 23
1.2 MOS and Schottky barrier transistor theory 25
1.2.1 MOSFET: Metal Oxide Semiconductor Field Effect Transistor 25
1.2.2 Gate coupling 27
1.2.3 Oxide charges and flatband voltage 29
1.2.4 Charge trapping and charge-voltage hysteresis 30
1.2.5 Schottky barrier 32
1.2.6 SB-FETs 34
1.3 ISFET and BioFET technology 36
1.3.1 ISFET and BioFET working principle 37
1.3.2 Noise in ISFETs 41
2 Fabrication of Schottky barrier FET parallel arrays 43
2.1 Starting point of device fabrication 43
2.2 Parallel array transistor and sensor devices 44
2.2.1 Gold nano particle deposition 45
2.2.2 Bottom-up growth of Si nanowires 46
2.2.3 Nanowire deposition methods 48
Langmuir-Blodgett 48
Adhesion tape transfer 49
Contact printing/ smearing transfer 49
2.2.4 Nanowire oxidation 50
2.2.5 Chip design 51
2.2.6 UV lithography 53
2.2.7 Oxide removal and metal deposition 54
2.2.8 Nanowire silicidation 54
2.2.9 Ionsensitive, top gate dielectric and contact passivation 56
2.2.10 On chip reference electrode 57
3 Electrical characterization 59
3.1 Electrical characterization methods 59
3.2 Transfer characteristics 60
3.2.1 Silicidation: intruded silicide contacts 62
3.2.2 Scaling of the conduction channel length 63
3.2.3 Flatband voltage, built-in potentials, fixed and trapped oxide charge 71
3.2.4 Surface effects on the channel potential of back gated SB-FETs 72
3.3 Charge traps, hysteresis and Vth drifts 73
3.3.1 Screening of back gate fields by water molecules 74
3.3.2 Native oxides: unipolarity by water promoted charge trapping 76
3.3.3 Hysteresis for thermally grown oxide back and top gate devices 78
3.3.4 Hysteresis reduction by post anneal 79
3.4 Output characteristics 80
3.4.1 Unipolar output characteristics of nanowires with native oxide shell 80
3.4.2 Ambipolar output characteristics of nanowires with dry oxidized shell 82
3.5 Temperature dependence 84
3.6 Transistor noise 86
4 pH measurements 91
4.1 Experimental setup and data analysis method 91
4.2 Transfer function in electrolyte with liquid gate 92
4.3 Sensor response on pH 92
4.4 Sensor signal drifts 96
5 Schottky junction impact on sensitivity 97
5.1 Schottky junction electrostatic decoupling in solution 97
5.1.1 Experimental setup in solution 98
5.1.2 SU8/Al2O3 passivated junctions in electrolyte 98
5.2 Meander shaped gates without Schottky junction overlap 101
5.2.1 Separated gating of Schottky junctions and channel 102
5.2.2 Enhanced transducer performance by reduced Schottky junction resistance 104
6 Summary and Outlook 107
List of publications 111
Bibliography 126
Acknowledgements 127

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28755
Date30 April 2015
CreatorsPregl, Sebastian
ContributorsCuniberti, Gianaurelio, Lugli, Paolo, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds