Electric and more-electric vehicle proliferation continues unabated as government mandates worldwide demand fuel economies in excess of what conventional internal combustion engines are capable of. Vehicle electrification, to any degree, is perceived to be the means by which automotive companies may meet these targets. Electrification introduces a myriad of problems including cost, weight and reliability, all of which must be addressed in their own right. The rapid commercialisation of wide-bandgap semiconductor materials which, as a whole, exhibit properties superior to ubiquitous Silicon, provides the opportunity for power electronic converter minimisation and efficiency maximisation, easing the challenge of meeting current and incoming standards.
This thesis concerns itself with the design methodology of a highly power dense converter, as applied to a three-phase inverter. By using figures of merit, simple modelling techniques and novel discrete component selection tools, a converter is designed that is capable of switching 30kW of electric power at 100kHz in a small package. Testing results show that the converter, with a simple forced air heatsinking solution, can effectively switch 9kW of power and is capable of reaching 15kW. Given the temperature rise of one phase leg of the inverter relative to the others, a superior heatsink design would allow the inverter to reach its rated power levels. / Dissertation / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20411 |
Date | January 2016 |
Creators | Eull, William |
Contributors | Emadi, Ali, Electrical and Computer Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0025 seconds