Polycrystalline silicon (pc-Si, grain size > 1??m, no amorphous tissue) on glass is an interesting material for thin-film solar cells due to the low costs, the abundance and the non-toxic character of Si, and the properties of pc-Si like long-term stability and lateral conductance. Glass as supporting material significantly complicates the fabrication process as it limits the thermal budget and the maximum temperature. In this work, the feasibility of forming large-grained pc-Si thin-film solar cells on glass by ion-assisted deposition (IAD) on aluminium-induced crystallisation (AIC) seed layers (ALICIA solar cells) is investigated. IAD allows epitaxial growth at high rate, and being based on evaporation, is of low cost (high source material usage, no toxic gases involved). High-quality epitaxy on (100)-oriented Si wafer substrates is demonstrated in a non{UHV environment, to further increase its industrial appli- cability. High{rate growth and a sacrificial protective layer control contamination problems associated with the non-UHV environment. The process is then trans- ferred to AIC-seeded glass and optimised, with particular focus on the influence of the glass. Using high-temperature rapid thermal annealing and hydrogenation as post-deposition treatments, ALICIA solar cells with a 1-Sun open-circuit voltage of 420 mV are achieved. Moreover, two novel characterisation techniques are presented. One allows the fast and non-destructive assessment of the structural quality of pc-Si films using opti- cal measurements. Furthermore, `impedance analysis', a novel capacitance-voltage measurement technique based on impedance spectroscopy, is presented. It allows the reliable determination of the absorber layer doping density and the built{in potential of non-ideal p-n junction solar cells. The latter is used to investigate the influence of post{deposition treatments on the n-type absorber layer doping of ALICIA solar cells. It is found, using temperature dependent impedance analysis, that unintentional doping and defects have a strong influence on the absorber layer doping. A maximum in the short-circuit current density of ALICIA solar cells is found for phosphorus concentrations in the absorber of 1??1017 cm??3. For such ALI- CIA cells a base difusion length in the range 600 - 950nm, a short{circuit current density in the range 10 - 13.5 mA/cm2 and an energy conversion efficiency of 2.2% are obtained.
Identifer | oai:union.ndltd.org:ADTP/280481 |
Date | January 2005 |
Creators | Straub, Axel, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Axel Straub, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds