Return to search

Development and Analysis of 3D-Printed Synthetic Vocal Fold Models

Vocal fold models are valuable for studying voice production. They provide an alternative method of studying the mechanics of the voice that does not require in vivo experimentation or the use of excised human or animal tissue. In this thesis, a new method of creating vocal fold models through additive manufacturing is described. The purpose of this research was to reduce model fabrication time, to decrease the number of model failures during manufacturing, and to lay the foundation for creating models with more lifelike geometric and material properties. This research was conducted in four stages. First, a suitable silicone additive manufacturing technique using a UV-curable silicone was chosen. The technique chosen was called freeform reversible embedding (FRE) and involved embedding liquid silicone material into a gel-like medium named organogel. The UV-curable silicone's material properties were identified to confirm its utility in vocal fold model design. Second, an open-source, fused deposition modeling slicing software was selected to create g-code for the printer. Applicable software settings were tuned through qualitative printing tests to find their optimal values for use in FRE printing. Third, 3D-printed cubes were used in tensile tests to characterize the material properties of FRE-printed, silicone material. The cubes were found to be anisotropic, exhibiting different modulus values corresponding to the layer orientation of the printed material. Fourth, vocal fold models were FRE-printed in two different layer orientations and were used in phonation tests to gather data for onset pressure, vibratory frequency, amplitude, and flow rate. The printed models self-oscillated and withstood the strains induced by phonation. These tests showed that layer direction affects the phonation properties of the models, demonstrating that models with layers in the coronal plane had slightly lower frequencies and onset pressures than models with layers in the sagittal plane. The models' onset pressures were higher than what is found in human vocal folds. However, their frequencies were within a comparable range. These tests showed the effectiveness of additive manufacturing in the application of vocal fold fabrication, reducing production effort by allowing researchers to go directly from model design to fabrication in a single manufacturing step. It is anticipated that this method will be modified to incorporate printing of multiple stiffnesses of silicone to better mimic the material properties of vocal fold tissue, and that the anisotropy of 3D-printed material will be leveraged to model the anisotropy of human vocal folds. This work also has potential application areas outside of voice research.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-8727
Date01 August 2019
CreatorsRomero, Ryan Gregory
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0018 seconds