A clutch actuator is used in a vehicle to transmit movement and force from the clutch pedal to the release bearing of the clutch. A pneumatic clutch actuator consists of an anodised aluminium cylinder, inside of which a piston, with a rubber lip seal and a PTFE guiding ring, slides. The system is lubricated with silicone grease before assembly. A commercial clutch actuator of this type, has a service life of 3 million actuations and must function in a wide temperature range, from -40 ºC to 140 ºC. In this thesis, the complex tribological system of pneumatic clutch actuators has been studied. Field worn actuators have been disassembled and investigated. A laboratory test method has been developed to understand the tribomechanisms present in pneumatic clutch actuators. The test method's capability of simulating the real contact has been verified, by the comparison with studied actuators from the field. The influence of contact parameters: temperature, load, lubrication and particle contamination, has been investigated. In addition, different anodised aluminium surfaces have been studied. The manufacturing method of the aluminium cylinder influences surface topography and structure of the oxide, resulting in different mechanical and frictional properties. The wear during tests with only silicone grease is reminiscent, but on a lower scale, to the wear during tests with a mixture of silicone grease and standard dust. The initially applied amount of silicone grease is not important, the friction seems to depend on the amount of silicone grease that is dragged into or pushed out from the contact area during testing. Silicone grease lubrication reduces wear of the lip seal. However, during some tests, an adhesive layer, composed of grease residuals and some PTFE, was formed on the lip. A triple PTFE transfer, from guiding ring to aluminium surface, to lip seal, to aluminium surface, occurred. Such transfer of material from the PTFE guiding ring was detected from the unlubricated tests, and also from the silicone grease lubricated tests, i.e. silicone grease lubrication does not prevent PTFE material transfer.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-195330 |
Date | January 2013 |
Creators | Riddar, Frida |
Publisher | Uppsala universitet, Tillämpad materialvetenskap, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1021 |
Page generated in 0.0023 seconds