Return to search

Dynamic warp formation : exploiting thread scheduling for efficient MIMD control flow on SIMD graphics hardware

Recent advances in graphics processing units (GPUs) have resulted in massively parallel hardware that is easily programmable and widely available in commodity desktop computer systems. GPUs typically use single-instruction, multiple-data (SIMD) pipelines to achieve high performance with minimal overhead for control hardware. Scalar threads running the same computing kernel are grouped together into SIMD batches, sometimes referred to as warps. While SIMD is ideally suited for simple programs, recent GPUs include control flow instructions in the GPU instruction set architecture and programs using these instructions may experience reduced performance due to the way branch execution is supported by hardware. One solution is to add a stack to allow different SIMD processing elements to execute distinct program paths after a branch instruction. The occurrence of diverging branch outcomes for different processing elements significantly degrades performance using this approach. In this thesis, we propose dynamic warp formation and scheduling, a mechanism for more efficient SIMD branch execution on GPUs. It dynamically regroups threads into new warps on the fly following the occurrence of diverging branch outcomes. We show that a realistic hardware implementation of this mechanism improves performance by an average of 47% for an estimated area increase of 8%.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./2268
Date11 1900
CreatorsFung, Wilson Wai Lun
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format1157611 bytes, application/pdf

Page generated in 0.0084 seconds