The aim of this work is to generalize the results given by Domitrz, Janeczko and Zhitomirskii in [10]. In this article they classify in the symplectic manifold (R2, w) where w = dx1 Λ dx2 + · · · + dx2n-1 Λ dx2n is the symplectic form given by Darbouxs Theorem, all the set which are symplectomorphic to a fixed quasi homogeneous curve . To do this classification they defined the algebraic restrictions. We develop a new method called the method of exact algebraic restrictions and show that this classification is solved for the non quasi homogeneous case N = {(x1, x2) = x≥3 = 0} in the symplectic manifold (C2, w ), where f(x1, x2) = x41 + x52 + x21 x32. / Este trabalho tem como objetivo generalizar os resultados feitos por Domitrz, Janeczko e Zhitomirskii em [10]. Neste artigo eles clasificaram na variedade simplética (R2, w) onde w = dx1 Λ dx2 + ... + dx2n-1 Λ dx2n é a forma simpléctica dada pelo Teorema de Darboux, todos os conjuntos que são simplectomorfos a uma curva quase homogênea fixada . Para fazer a classificação eles definem as restrições algebraicas. Nós desenvolvemos um novo método o qual chamamos de método das restrições algebraicas exatas e provamos que a classificação é resolvida para o caso não quase homogêneo N = {f(x1, x2) = x≥3 = 0} na variedade simplética (C2, w ), onde f(x1, x2) = x41 + x52 + x21 x32.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-30102018-152753 |
Date | 27 April 2018 |
Creators | Lito Edinson Bocanegra Rodríguez |
Contributors | Roberta Godoi Wik Atique, Wojciech Domitrz, Lev Birbrair, Fábio Scalco Dias, Raúl Adrián Oset Sinha |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds