Return to search

Uma aproximação do tipo Euller - Maruyama para o processo de Cox-Ingersoll-Ross / An Euler-Maruyama-tupe method approach for the Cox-Ingersoll-Ross

Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos. / In this master\'s thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic differential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12012017-111739
Date26 February 2015
CreatorsFerreira, Ricardo Felipe
ContributorsPinto Junior, Dorival Leão
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds