Return to search

Simulation and Experimental Based Hardenability Evaluation of Chromium Alloyed Powder Metal Steels

Powder metallurgy is a branch of metal forming technology where metal powders are used to manufacture parts and components. It is a flexible and economical technique for manufacturing complicated shapes. This present work focuses on press and sinter technology and forms a part of Höganäs’s efforts of modelling hardenability through quenching. It aims to reduce the number of experimental trials for optimising heat treatment. Hardenability is a measure of how much martensite can be formed during heat treatment, thereby making steels hard, tough and impart strength. The presence of alloying elements like carbon, manganese, chromium, molybdenum, and nickel affects the hardenability of the steel and improves performance like fatigue strength and corrosion resistance. These elements influence the critical cooling rate necessary to form martensite during heat treatment. Component geometry also influences hardenability. Depending on the surface area available to cool, and volume of component, cooling rates may locally be different thereby resulting in an inhomogeneous structure. The work focuses particularly on two grades of powders manufactured by Höganäs AB - Astaloy® CrA and Astaloy® CrS which are evaluated for their hardenability. The aim of this work is to take cooling conditions observed in the actual furnace, use them to predict the amount of martensite present and the martensite start temperature and then compare it with experimental results thereby linking experiment to simulations. For the experimental part, dilatometry was used. Quenching data is obtained from the furnace along with heat capacity of the component and are used as input in Abaqus, which gives us the cooling rates for the component in the furnace. This data is then utilised as an input to dilatometry, where the samples are representative of sections of component. After dilatometry, vital information like martensite start temperature is recorded and metallography is performed, where phase fraction is obtained. Hardness measurements are also performed to verify the phases present. Simulation tools like JMatPro and Thermo-Calc are employed to obtain data for correlation. An extensive study on the difference between them are also studied and presented. The data from simulation and actual experiment is compared and, Ms evaluated from JMatPro and Thermo-Calc for CrA shows a deviation of 12°C. For CrS samples, a higher deviation is observed, with JMatPro showing deviation of 44°C and Thermo-Calc, 52°C in respect to the measured values. For CrA, we observe a fully martensitic structure for the higher carbon samples, including ones alloyed with Ni. For samples with lower carbon, metallographic investigation results in an unclear picture as to if the structure observed is bainite or martensite. CrS samples are mostly martensitic with some bainite present. CrS samples alloyed with Ni and Cu show the least amount of bainite present. The phase fractions predicted by JMatPro show good agreement with results from metallography. Data from microhardness confirms the presence of phases present. Samples with low carbon are softest but show a great improvement in hardness when alloyed. Overall, simulations and actual experimental values are seen to be in good agreement, thereby establishing a strong foundation for future work, where actual components can be evaluated. Quenching conditions observed in the furnace are validated through this work. / Pulvermetallurgi är en gren av metallformningsteknik där metallpulver används för att tillverka delar och komponenter. Det är en flexibel och ekonomisk teknik för att tillverka komplicerade former. Detta nuvarande arbete fokuserar på press- och sinterteknik och är en del av Höganäs arbete med att modellera härdbarhet genom härdning. Det syftar till att minska antalet experimentella försök för att optimera värmebehandlingen. Härdbarhet är ett mått på hur mycket martensit som kan bildas vid värmebehandling, vilket gör stålen hårda, sega och ger styrka. Närvaron av legeringselement som kol, mangan, krom, molybden och nickel påverkar stålets härdbarhet och förbättrar prestanda som utmattningshållfasthet och korrosionsbeständighet. Dessa element påverkar den kritiska kylningshastighet som krävs för att bilda martensit under värmebehandling. Komponentgeometrin påverkar också härdbarheten. Beroende på den yta som är tillgänglig för kylning och volymen av komponenten, kan kylningshastigheterna lokalt vara olika, vilket resulterar i en inhomogen struktur. Arbetet fokuserar särskilt på två kvaliteter av pulver tillverkade av Höganäs AB - Astaloy® CrA och Astaloy® CrS som utvärderas för sin härdbarhet. Syftet med detta arbete är att ta kylförhållanden som observerats i den faktiska ugnen, använda dem för att förutsäga mängden närvarande martensit och martensitens starttemperatur och sedan jämföra den med experimentella resultat och därigenom koppla experiment till simuleringar. För den experimentella delen användes dilatometry. Släckningsdata erhålls från ugnen tillsammans med värmekapaciteten hos komponenten och används som indata i Abaqus, vilket ger oss kylhastigheten för komponenten i ugnen. Dessa data används sedan som indata till dilatometry, där proverna är representativa för sektioner av komponenten. Efter dilatometri registreras viktig information som martensitstarttemperatur och metallografi utförs, där fasfraktion erhålls. Hårdhetsmätningar utförs också för att verifiera de närvarande faserna. Simuleringsverktyg som JMatPro och Thermo-Calc används för att få data för korrelation. En omfattande studie om skillnaden mellan dem studeras och presenteras också. Data från simulering och faktiska experiment jämförs och Ms utvärderade från JMatPro och Thermo-Calc för CrA visar en avvikelse på 12°C. För CrS-prover observeras en högre avvikelse, där JMatPro visar en avvikelse på 44°C och Thermo-Calc, 52°C i förhållande till de uppmätta värdena. För CrA observerar vi en helt martensitisk struktur för de högre kolproverna, inklusive de som legerats med Ni. För prover med lägre kolhalt resulterar metallografisk undersökning i en oklar bild av om den observerade strukturen är bainit eller martensit. CrS-prover är mestadels martensitiska med viss bainit närvarande. CrS-prover legerade med Ni och Cu visar den minsta mängden bainit som finns närvarande. Fasfraktionerna som förutspåtts av JMatPro visar god överensstämmelse med resultaten från metallografi. Data från mikrohårdhet bekräftar närvaron av faser. Prover med låg kolhalt är mjukast men visar en stor förbättring i hårdhet när de är legerade. Sammantaget bedöms simuleringar och faktiska experimentella värden stämma överens, vilket skapar en stark grund för framtida arbete, där faktiska komponenter kan utvärderas. Släckningsförhållanden som observerats i ugnen valideras genom detta arbete.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-333700
Date January 2023
CreatorsKotasthane, Atharva
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2023:499

Page generated in 0.0028 seconds