Return to search

Genetic Susceptibility to Arsenic Exposure and Arsenical Skin Lesion Prevalence in Bangladesh

Elevated concentrations of arsenic in groundwater pose a public health threat to millions of people worldwide. While arsenic is an established human carcinogen, a mode of action has yet to be determined for arsenic carcinogenesis. However, the oxidative stress and DNA repair pathways have been implicated in arsenic toxicity and have been hypothesized to underlie arsenic carcinogenesis. To date, few epidemiologic studies have evaluated genetic susceptibility to arsenical skin lesions based on single nucleotide polymorphisms (SNPs) in antioxidant enzyme or DNA repair genes. Utilizing cross-sectional data from the 2000-2002 survey of the Health Effects of Arsenic Longitudinal Study (HEALS) for 610 prevalent arsenical skin lesion cases and 1,079 randomly selected controls, I evaluated the associations of SNPs in genes encoding antioxidant enzymes and DNA repair enzymes on skin lesion prevalence. I also evaluated potential interactions between the SNPS as well as SNP-environment interactions in determining skin lesion prevalence. In the first study of this dissertation (Chapter 2), I assessed the relationship between SNPs in antioxidant enzyme genes and skin lesion prevalence, as well as possible interactions of these associations on the additive scale by various environmental factors. There were no statistically significant associations between these SNPs (SOD2, rs4880; CAT, rs1001179; GPX1, rs1050450; and MPO, rs2333227) and skin lesion prevalence. Additionally, there was no evidence of additive interaction by arsenic exposure levels, body mass index, smoking status, or fruit and vegetable intake with the SNPs in relation to skin lesion prevalence. However, there was marginal evidence that skin lesion prevalence was increased among individuals who carried 4 or more risk alleles compared to individuals carrying 0-3 risk alleles in these SNPs. Additionally, I observed a significant departure from additivity for the risk allele score and primary methylation index on skin lesion prevalence. In the second study of this dissertation (Chapter 3), I assessed the relationship between SNPs in DNA repair genes (OGG1, rs1052133; XRCC1, rs25487 and rs1799782; XRCC3, rs861539; ERCC2, rs1052559; ERCC5, rs17655; and LIG4, rs1805388) and skin lesion prevalence, as well as possible interactions of these associations on the additive scale by various environmental factors. In logistic regression models controlling for sex, age, and well water arsenic concentration, no associations were observed between measured SNPs and skin lesion prevalence. The results did not vary by arsenic exposure levels, body mass index, or smoking status. However, I did observe a significant inverse association of total fruit and vegetable consumption with skin lesion prevalence, and its additive interaction with the polymorphism in ERCC5. In the third study of this dissertation (Chapter 4), I utilized a multi-analytic approach to explore gene-gene, gene-environment, and higher-order interactions among 10 SNPs related to the oxidative stress and DNA repair pathways by MDR, CART, and logistic regression models. As shown in Chapters 2 and 3, none of these SNPs were associated with skin lesion prevalence, however, were evaluated for potential SNP-SNP interactions. MDR and CART modeling approaches were utilized for the selection of potential gene-gene and gene-environment interactions. Considerable overlap of the interactions detected by both these methods was observed, which were further evaluated by logistic regression. Results from logistic regression modeling, provided some evidence of these statistical interactions; however, their biological interpretation was limited. In summary, there was marginal evidence that skin lesion prevalence was increased among individuals who carried 4 or more risk alleles in genotyped SNPs related to the oxidative stress pathway compared to individuals carrying 0-3 risk alleles in these SNPs and, a significant departure from additivity was observed for the risk allele score and primary methylation index on skin lesion prevalence. Additionally, a significant inverse association of total fruit and vegetable consumption with skin lesion prevalence was observed and, a significant interaction between the polymorphism in ERCC5 and total fruit and vegetable intake was observed in relation to skin lesion prevalence on the additive scale. However, these finding require replication in other studies.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8CC16NM
Date January 2011
CreatorsArgos, Maria
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.002 seconds