Return to search

A Complete Analysis for Pump Controlled Single Rod Actuators

In the current study a variable speed pump controlled hydrostatic circuit where an underlapped shuttle valve is utilized to compensate the unequal flow rate of a single rod actuator is analyzed. Parameters of the shuttle valve are included in the system analysis, rather than treating it as an ideal switching element as handled in literature. A linearized model of the system is obtained. An inverse kinematic model, which calculates the required pump drive speed for a desired actuator speed and given pilot pressure input, is formed. A numerical stability analysis program is developed, and the stability of all possible shuttle valve spool positons is determined. The theoretical findings are validated by non-linear simulation model responses.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29347
Date January 2016
CreatorsÇalışkan, Hakan, Balkan, Tuna, Platin, Bülent E.
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V.
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Source10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 2, pp. 119-132
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa-196941, qucosa:29238

Page generated in 0.0019 seconds