The work of this thesis consists of a systematic study of low-lying, proton single-particle states in Z = 51 isotopes. States in 113−125Sb were populated via (α,t) and (3He,d) single-proton adding reactions, performed on stable even tin isotopes. The Yale tandem accelerator delivered beams of 37.5-MeV α particles and 25-MeV 3He nuclei for the reactions. Outgoing tritons and deuterons were momentum analysed using an Enge split-pole spectrometer. To obtain absolute cross sections, the product of target thickness and spectrometer aperture size was calibrated for each target, using sub-Coulomb α- particle elastic scattering. States were observed up to ∼4 MeV excitation energy. Angular momentum transfer assignments were made through comparison of angular distributions and ratios of cross sections between different reactions. Relative spectroscopic factors ex- tracted through a DWBA analysis allowed energy centroids of the observed single-particle strength to be reconstructed.These measurements build upon the results of a previous (α,t) study, which was per- formed on the same targets. The previous measurements estimated that ∼ 90% of the πg7/2 and πh11/2 strength was held in the lowest-lying 7/2+ and 11/2− states, respectively. The difference in energy of these states increased with increasing neutron excess, and al- though they were in agreement with theoretical calculations that included contributions of the tensor interaction, poor statistics limited the information obtained regarding the weak fragments of high-j single-particle strength. Careful examination of these fragments, with the use of greater statistics, has been performed in this work. The (3He,d) measurements aid in making l transfer assignments and provide complementary information regarding the low-j states.Binding energies of the πg7/2 and πh11/2 orbitals measured in this work were compared to the energies of the lowest-lying 7/2+ and 11/2− states and theoretical calculations that include the tensor interaction. Though shifted higher in energy due to the fragmentation, trends in the centroids appear to be consistent with the lowest-lying states. The trend of the πg7/2–πh11/2 energy difference is in quantitative agreement with the predicted effects of the tensor interaction, with increasing neutron excess.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:564307 |
Date | January 2012 |
Creators | Mitchell, Alan John |
Contributors | Freeman, Sean |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/investigating-highj-singleparticle-energies-in-z--51-nuclei(42930c32-33e6-4607-855b-0f319d72d4bd).html |
Page generated in 0.0018 seconds